|
On the limits of Kähler–Ricci flow on Fano group compactifications
Ya. Lia, Zh. Lib a Beijing Institute of Technology
b Beijing University of Chemical Technology
Abstract:
Let $G$ be a connected, complex reductive group. In this paper, we review the results on semistable limit of $\mathbb Q$-Fano compactifications and the characterization of minimizers of Futaki invariants. Using the algebraic uniqueness, we construct the limiting space of the Kähler–Ricci flow on Fano group compactifications of rank $2$.
Keywords:
Kähler–Ricci soliton, Kähler–Ricci flow, $\mathbb{Q}$-Fano compactification, $K$-stability.
Citation:
Ya. Li, Zh. Li, “On the limits of Kähler–Ricci flow on Fano group compactifications”, Proceedings of the International Conference «Classical and Modern Geometry» dedicated to the 100th anniversary of the birth of Professor Levon Sergeyevich Atanasyan (July 15, 1921—July 5, 1998). Moscow, November 1–4, 2021. Part 3, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 222, VINITI, Moscow, 2023, 30–41
Linking options:
https://www.mathnet.ru/eng/into1139 https://www.mathnet.ru/eng/into/v222/p30
|
Statistics & downloads: |
Abstract page: | 56 | Full-text PDF : | 20 | References: | 15 |
|