Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2023, Volume 221, Pages 3–9
DOI: https://doi.org/10.36535/0233-6723-2023-221-3-9
(Mi into1124)
 

On the existence of a positive solution to a boundary-value problem for a nonlinear second-order functional differential equation

G. È. Abduragimov

Daghestan State University, Makhachkala
References:
Abstract: In this paper, we consider a boundary-value problem for a second-order nonlinear functional-differential equation with a strong nonlinearity on the interval $[0,1]$ with integral boundary conditions. Using special topological tools, we obtain sufficient conditions for the existence of a unique positive solution of the problem. The existence of a positive solution is proved by applying the well-known cone dilation theorem, and the uniqueness is established by using the uniqueness principle for convex operators. An example is given, which illustrates the fulfillment of sufficient conditions for the unique solvability of the problem.
Keywords: positive solution, boundary value problem, cone, cone extension.
Document Type: Article
UDC: 517.927
MSC: 34K10
Language: Russian
Citation: G. È. Abduragimov, “On the existence of a positive solution to a boundary-value problem for a nonlinear second-order functional differential equation”, Proceedings of the International Conference «Classical and Modern Geometry» dedicated to the 100th anniversary of the birth of Professor Levon Sergeyevich Atanasyan (July 15, 1921—July 5, 1998).  Moscow, November 1–4, 2021. Part 2, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 221, VINITI, Moscow, 2023, 3–9
Citation in format AMSBIB
\Bibitem{Abd23}
\by G.~\`E.~Abduragimov
\paper On the existence of a positive solution to a boundary-value problem for a nonlinear second-order functional differential equation
\inbook Proceedings of the International Conference «Classical and Modern Geometry» dedicated to the 100th anniversary of the birth of Professor Levon Sergeyevich Atanasyan (July 15, 1921—July 5, 1998).  Moscow, November 1–4, 2021. Part 2
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2023
\vol 221
\pages 3--9
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into1124}
\crossref{https://doi.org/10.36535/0233-6723-2023-221-3-9}
Linking options:
  • https://www.mathnet.ru/eng/into1124
  • https://www.mathnet.ru/eng/into/v221/p3
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
    Statistics & downloads:
    Abstract page:51
    Full-text PDF :27
    References:17
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024