Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2023, Volume 220, Pages 113–124
DOI: https://doi.org/10.36535/0233-6723-2023-220-113-124
(Mi into1122)
 

Statistical structures on manifolds and their immersions

A. A. Rylov

Financial University under the Government of the Russian Federation, Moscow
References:
Abstract: An important example of structures of information geometry is a statistical structure. This is a Riemannian metric $g$ on a smooth manifold $M$ with a completely symmetric tensor field $K$ of type $(2,1)$. On a manifold endowed with the statistical structure $(g,K)$, a one-parameter family of $\alpha$-connections $\nabla^{\alpha}=D+\alpha\cdot K$ is defined invariantly, where $D$ is the Levi-Civita connection of the metric $g$ and $\alpha$ is a parameter. In this paper, we characterize conjugate symmetric statistical structures and their particular case—structures of constant $\alpha$-curvature. As an example, a description of a structure with $\alpha$-connection of constant curvature on a two-dimensional statistical Pareto model is given. We prove that the two-dimensional logistic model has a $2$-connection of constant negative curvature and the two-dimensional Weibull—Gnedenko model has a $1$-connection of constant positive curvature. Both these models possess conjugate symmetric statistical structures. For the case of a manifold $\widehat{M}$ with a torsion-free linear connection $\widehat{\nabla}$ immersed in a Riemannian manifold with statistical structure $(g,K)$, a criterion is obtained that a statistical structure with an appropriate $\widehat{\alpha}$-connection $\widehat{\nabla}$ is induced on the preimage.
Keywords: Riemannian metric, statistical structure, $\alpha$-connection, conjugate symmetric statistical manifold, statistical model, second fundamental form, relatively affine mapping.
Document Type: Article
UDC: 514.764
MSC: 53B12, 53C42
Language: Russian
Citation: A. A. Rylov, “Statistical structures on manifolds and their immersions”, Proceedings of the International Conference «Classical and Modern Geometry» dedicated to the 100th anniversary of the birth of Professor Levon Sergeyevich Atanasyan (July 15, 1921—July 5, 1998).  Moscow, November 1–4, 2021. Part 1, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 220, VINITI, Moscow, 2023, 113–124
Citation in format AMSBIB
\Bibitem{Ryl23}
\by A.~A.~Rylov
\paper Statistical structures on manifolds and their immersions
\inbook Proceedings of the International Conference «Classical and Modern Geometry» dedicated to the 100th anniversary of the birth of Professor Levon Sergeyevich Atanasyan (July 15, 1921—July 5, 1998). 
Moscow, November 1–4, 2021. Part 1
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2023
\vol 220
\pages 113--124
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into1122}
\crossref{https://doi.org/10.36535/0233-6723-2023-220-113-124}
Linking options:
  • https://www.mathnet.ru/eng/into1122
  • https://www.mathnet.ru/eng/into/v220/p113
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
    Statistics & downloads:
    Abstract page:111
    Full-text PDF :53
    References:15
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024