|
Polynomial automorphisms, quantization, and Jacobian conjecture related problems. V. Jacobian conjecture and Specht and Burnside type problems
A. M. Elisheva, A. Ya. Belova, F. Razaviniaa, Yu Jie-Taib, Wenchao Zhangc a Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Moscow Region
b Shenzhen University
c Huizhou University
Abstract:
This paper is the final part of a review of results concerning the quantization approach to the some classical aspects of noncommutative algebras.
The first part is: Itogi Nauki Tekhn. Sovr. Mat. Prilozh. Temat. Obzory, 213 (2022), pp. 110–144.
The second part is: Itogi Nauki Tekhn. Sovr. Mat. Prilozh. Temat. Obzory, 214 (2022), pp. 107–126.
The third part is: Itogi Nauki Tekhn. Sovr. Mat. Prilozh. Temat. Obzory, 215 (2022), pp. 95–128.
The fourth part is: Itogi Nauki Tekhn. Sovr. Mat. Prilozh. Temat. Obzory, 216 (2022), pp. 153–171.
Keywords:
automorphism, quantization, Jacobian conjecture.
Citation:
A. M. Elishev, A. Ya. Belov, F. Razavinia, Yu Jie-Tai, Wenchao Zhang, “Polynomial automorphisms, quantization, and Jacobian conjecture related problems. V. Jacobian conjecture and Specht and Burnside type problems”, Algebra, geometry, differential equations, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 217, VINITI, Moscow, 2022, 107–137
Linking options:
https://www.mathnet.ru/eng/into1102 https://www.mathnet.ru/eng/into/v217/p107
|
Statistics & downloads: |
Abstract page: | 102 | Full-text PDF : | 30 | References: | 17 |
|