Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2022, Volume 217, Pages 107–137
DOI: https://doi.org/10.36535/0233-6723-2022-217-107-137
(Mi into1102)
 

Polynomial automorphisms, quantization, and Jacobian conjecture related problems. V. Jacobian conjecture and Specht and Burnside type problems

A. M. Elisheva, A. Ya. Belova, F. Razaviniaa, Yu Jie-Taib, Wenchao Zhangc

a Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Moscow Region
b Shenzhen University
c Huizhou University
References:
Abstract: This paper is the final part of a review of results concerning the quantization approach to the some classical aspects of noncommutative algebras. The first part is: Itogi Nauki Tekhn. Sovr. Mat. Prilozh. Temat. Obzory, 213 (2022), pp. 110–144. The second part is: Itogi Nauki Tekhn. Sovr. Mat. Prilozh. Temat. Obzory, 214 (2022), pp. 107–126. The third part is: Itogi Nauki Tekhn. Sovr. Mat. Prilozh. Temat. Obzory, 215 (2022), pp. 95–128. The fourth part is: Itogi Nauki Tekhn. Sovr. Mat. Prilozh. Temat. Obzory, 216 (2022), pp. 153–171.
Keywords: automorphism, quantization, Jacobian conjecture.
Funding agency Grant number
Russian Science Foundation 22-11-00177
This work was supported by the Russian Science Foundation (project No. 22-11-00177).
Document Type: Article
UDC: 512.7
MSC: 14R10, 18G85
Language: Russian
Citation: A. M. Elishev, A. Ya. Belov, F. Razavinia, Yu Jie-Tai, Wenchao Zhang, “Polynomial automorphisms, quantization, and Jacobian conjecture related problems. V. Jacobian conjecture and Specht and Burnside type problems”, Algebra, geometry, differential equations, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 217, VINITI, Moscow, 2022, 107–137
Citation in format AMSBIB
\Bibitem{EliBelRaz22}
\by A.~M.~Elishev, A.~Ya.~Belov, F.~Razavinia, Yu~Jie-Tai, Wenchao~Zhang
\paper Polynomial automorphisms, quantization, and Jacobian conjecture related problems. V. Jacobian conjecture and Specht and Burnside type problems
\inbook Algebra, geometry, differential equations
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2022
\vol 217
\pages 107--137
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into1102}
\crossref{https://doi.org/10.36535/0233-6723-2022-217-107-137}
Linking options:
  • https://www.mathnet.ru/eng/into1102
  • https://www.mathnet.ru/eng/into/v217/p107
    Cycle of papers
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
    Statistics & downloads:
    Abstract page:102
    Full-text PDF :30
    References:17
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024