|
Formula for analytic continuation of the Kampé de Fériet hypergeometric function
A. Hasanova, T. K. Yuldashevb a V. I. Romanovskiy Institute of Mathematcs of the Academy of Sciences of Uzbekistan
b Tashkent State University of Economics
Abstract:
We apply the method of Burchnall—Chaundy operators to the study of expansion formulas for the Kampé de Férriet hypergeometric function $F_{1:1;1}^{0:3;3} [x,y]$. Using the obtained operator identities, we derive 14 expansion formulas. A new group of Euler-type integral representations for the Kampé de Férriet hypergeometric function $F_{1:1;1}^{0:3;3} [x,y]$ is found and its analytic continuation is constructed.
Keywords:
Kampé de Férriet hypergeometric function, Bourchnall–Chaundy operator, integral representation, expansion formula, analytic continuation.
Citation:
A. Hasanov, T. K. Yuldashev, “Formula for analytic continuation of the Kampé de Fériet hypergeometric function”, Algebra, geometry, differential equations, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 217, VINITI, Moscow, 2022, 97–106
Linking options:
https://www.mathnet.ru/eng/into1101 https://www.mathnet.ru/eng/into/v217/p97
|
Statistics & downloads: |
Abstract page: | 87 | Full-text PDF : | 39 | References: | 32 |
|