Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2022, Volume 216, Pages 153–171
DOI: https://doi.org/10.36535/0233-6723-2022-216-153-171
(Mi into1090)
 

Polynomial automorphisms, quantization, and Jacobian conjecture related problems. IV. Approximations by polynomial symplectomorphisms

A. M. Elisheva, A. Ya. Belova, F. Razaviniaa, Yu Jie-Taib, Wenchao Zhangc

a Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Moscow Region
b Shenzhen University
c Huizhou University
References:
Abstract: This paper is the fourth part of a review of results concerning the quantization approach to the some classical aspects of noncommutative algebras. The first part is: Itogi Nauki Tekhn. Sovr. Mat. Prilozh. Temat. Obzory, 213 (2022), pp. 110–144. The second part is: Itogi Nauki Tekhn. Sovr. Mat. Prilozh. Temat. Obzory, 214 (2022), pp. 107–126. The third part is: Itogi Nauki Tekhn. Sovr. Mat. Prilozh. Temat. Obzory, 215 (2022), pp. 95–128. The final part of the survey will be published in the next issue.
Keywords: automorphism, quantization, Jacobian conjecture.
Funding agency Grant number
Russian Science Foundation 22-11-00177
This work was supported by the Russian Science Foundation (project No. 22-11-00177).
Document Type: Article
UDC: 512.7
MSC: 14R10, 18G85
Language: Russian
Citation: A. M. Elishev, A. Ya. Belov, F. Razavinia, Yu Jie-Tai, Wenchao Zhang, “Polynomial automorphisms, quantization, and Jacobian conjecture related problems. IV. Approximations by polynomial symplectomorphisms”, Algebra, geometry, differential equations, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 216, VINITI, Moscow, 2022, 153–171
Citation in format AMSBIB
\Bibitem{EliBelRaz22}
\by A.~M.~Elishev, A.~Ya.~Belov, F.~Razavinia, Yu~Jie-Tai, Wenchao~Zhang
\paper Polynomial automorphisms, quantization, and Jacobian conjecture related problems. IV. Approximations by polynomial symplectomorphisms
\inbook Algebra, geometry, differential equations
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2022
\vol 216
\pages 153--171
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into1090}
\crossref{https://doi.org/10.36535/0233-6723-2022-216-153-171}
Linking options:
  • https://www.mathnet.ru/eng/into1090
  • https://www.mathnet.ru/eng/into/v216/p153
    Cycle of papers
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
    Statistics & downloads:
    Abstract page:84
    Full-text PDF :25
    References:23
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024