|
Polynomial automorphisms, quantization, and Jacobian conjecture related problems. IV. Approximations by polynomial symplectomorphisms
A. M. Elisheva, A. Ya. Belova, F. Razaviniaa, Yu Jie-Taib, Wenchao Zhangc a Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Moscow Region
b Shenzhen University
c Huizhou University
Abstract:
This paper is the fourth part of a review of results concerning the quantization approach to the some classical aspects of noncommutative algebras.
The first part is: Itogi Nauki Tekhn. Sovr. Mat. Prilozh. Temat. Obzory, 213 (2022), pp. 110–144.
The second part is: Itogi Nauki Tekhn. Sovr. Mat. Prilozh. Temat. Obzory, 214 (2022), pp. 107–126.
The third part is: Itogi Nauki Tekhn. Sovr. Mat. Prilozh. Temat. Obzory, 215 (2022), pp. 95–128.
The final part of the survey will be published in the next issue.
Keywords:
automorphism, quantization, Jacobian conjecture.
Citation:
A. M. Elishev, A. Ya. Belov, F. Razavinia, Yu Jie-Tai, Wenchao Zhang, “Polynomial automorphisms, quantization, and Jacobian conjecture related problems. IV. Approximations by polynomial symplectomorphisms”, Algebra, geometry, differential equations, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 216, VINITI, Moscow, 2022, 153–171
Linking options:
https://www.mathnet.ru/eng/into1090 https://www.mathnet.ru/eng/into/v216/p153
|
Statistics & downloads: |
Abstract page: | 84 | Full-text PDF : | 25 | References: | 23 |
|