Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2022, Volume 216, Pages 133–152
DOI: https://doi.org/10.36535/0233-6723-2022-216-133-152
(Mi into1089)
 

This article is cited in 4 scientific papers (total in 4 papers)

Integrable homogeneous dynamical systems with dissipation on the tangent bundles of smooth finite-dimensional manifolds. III. Equations of motion on the tangent bundle of an $n$-dimensional manifold in a force field with variable dissipation

M. V. Shamolin

Lomonosov Moscow State University
Full-text PDF (301 kB) Citations (4)
References:
Abstract: This paper is the conclusion of the work on the integrability of general classes of homogeneous dynamical systems with variable dissipation on the tangent bundles of $n$-dimensional manifolds. The first part of the paper is: Integrable homogeneous dynamical systems with dissipation on the tangent bundles of smooth finite-dimensional manifolds. I. Equations of geodesics on the tangent bundle of a smooth $n$-dimensional manifold// Itogi Nauki Tekhn. Sovr. Mat. Prilozh. Temat. Obzory. — 2022. — V. xxx. — P. xx–xx. The second part of the paper is: Integrable homogeneous dynamical systems with dissipation on the tangent bundles of smooth finite-dimensional manifolds. II. Equations of motion on the tangent bundle of an $n$-dimensional manifold in a potential force field// Itogi Nauki Tekhn. Sovr. Mat. Prilozh. Temat. Obzory. — 2022. — V. xxx. — P. xx–xx.
Keywords: dynamical system, nonconservative field, integrability, transcendental first integral.
Document Type: Article
UDC: 517.9; 531.01
MSC: 34Cxx, 70Cxx
Language: Russian
Citation: M. V. Shamolin, “Integrable homogeneous dynamical systems with dissipation on the tangent bundles of smooth finite-dimensional manifolds. III. Equations of motion on the tangent bundle of an $n$-dimensional manifold in a force field with variable dissipation”, Algebra, geometry, differential equations, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 216, VINITI, Moscow, 2022, 133–152
Citation in format AMSBIB
\Bibitem{Sha22}
\by M.~V.~Shamolin
\paper Integrable homogeneous dynamical systems with dissipation on the tangent bundles of smooth finite-dimensional manifolds. III.~Equations of motion on the tangent bundle of an $n$-dimensional manifold in a force field with variable dissipation
\inbook Algebra, geometry, differential equations
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2022
\vol 216
\pages 133--152
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into1089}
\crossref{https://doi.org/10.36535/0233-6723-2022-216-133-152}
Linking options:
  • https://www.mathnet.ru/eng/into1089
  • https://www.mathnet.ru/eng/into/v216/p133
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
    Statistics & downloads:
    Abstract page:64
    Full-text PDF :16
    References:21
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024