Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2022, Volume 216, Pages 116–123
DOI: https://doi.org/10.36535/0233-6723-2022-216-116-123
(Mi into1087)
 

Existence of a surface with prescribed geometric characteristics in the Galilean space

B. M. Sultanov

Urgench State University named after Al-Khorezmi
References:
Abstract: In this paper, we prove the existence of a cyclic surface spanned by two given curved spaces, the existence of a complete cyclic surface with a given total curvature on the whole plane, and the existence of a surface with given coefficients of the first quadratic form and the curvature defect.
Keywords: Galilean space, cyclic surface, reconstruction, geometric characteristics, curvature defect, isometry.
Document Type: Article
UDC: 517.126+514.7
MSC: 53A35, 53B30
Language: Russian
Citation: B. M. Sultanov, “Existence of a surface with prescribed geometric characteristics in the Galilean space”, Algebra, geometry, differential equations, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 216, VINITI, Moscow, 2022, 116–123
Citation in format AMSBIB
\Bibitem{Sul22}
\by B.~M.~Sultanov
\paper Existence of a surface with prescribed geometric characteristics in the Galilean space
\inbook Algebra, geometry, differential equations
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2022
\vol 216
\pages 116--123
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into1087}
\crossref{https://doi.org/10.36535/0233-6723-2022-216-116-123}
Linking options:
  • https://www.mathnet.ru/eng/into1087
  • https://www.mathnet.ru/eng/into/v216/p116
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
    Statistics & downloads:
    Abstract page:57
    Full-text PDF :39
    References:19
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024