Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2022, Volume 216, Pages 97–105
DOI: https://doi.org/10.36535/0233-6723-2022-216-97-105
(Mi into1085)
 

On geometry of conformal vector fields

A. Ya. Narmanov, O. Y. Qasimov, E. O. Rajabov

National University of Uzbekistan named after Mirzo Ulugbek, Tashkent
References:
Abstract: This paper is a review of some works on the geometry of conformal vector fields.
Keywords: manifold, Killing vector field, conformal vector field, orbit, foliation, distribution.
Funding agency Grant number
Ministry of Innovative Development of the Republic of Uzbekistan $\Phi3$-2020092531
This work was supported by the Ministry of Innovative Development of the Republic of Uzbekistan (fundamental research project $\Phi3$-2020092531).
Document Type: Article
UDC: 514.763.23
Language: Russian
Citation: A. Ya. Narmanov, O. Y. Qasimov, E. O. Rajabov, “On geometry of conformal vector fields”, Algebra, geometry, differential equations, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 216, VINITI, Moscow, 2022, 97–105
Citation in format AMSBIB
\Bibitem{NarQasRaj22}
\by A.~Ya.~Narmanov, O.~Y.~Qasimov, E.~O.~Rajabov
\paper On geometry of conformal vector fields
\inbook Algebra, geometry, differential equations
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2022
\vol 216
\pages 97--105
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into1085}
\crossref{https://doi.org/10.36535/0233-6723-2022-216-97-105}
Linking options:
  • https://www.mathnet.ru/eng/into1085
  • https://www.mathnet.ru/eng/into/v216/p97
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
    Statistics & downloads:
    Abstract page:68
    Full-text PDF :36
    References:24
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024