Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2022, Volume 216, Pages 76–87
DOI: https://doi.org/10.36535/0233-6723-2022-216-76-87
(Mi into1083)
 

Cycles of two competing macroeconomic systems within a certain version of the Goodwin model

D. A. Kulikova, O. V. Baevab

a P.G. Demidov Yaroslavl State University
b The Academy of Law Management of the Federal Penal Service of Russia
References:
Abstract: In this paper, we examine the problem of competitive interaction of two macroeconomic systems. As the basic model, the well-known Goodwin model is chosen. We obtain sufficient conditions under which stable limit cycles can appear in the system considered.
Keywords: Goodwin model, competition, economic cycle, stability, bifurcation, asymptotic formula.
Document Type: Article
UDC: 517.929
MSC: 34C15, 34C23, 37N40
Language: Russian
Citation: D. A. Kulikov, O. V. Baeva, “Cycles of two competing macroeconomic systems within a certain version of the Goodwin model”, Algebra, geometry, differential equations, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 216, VINITI, Moscow, 2022, 76–87
Citation in format AMSBIB
\Bibitem{KulBae22}
\by D.~A.~Kulikov, O.~V.~Baeva
\paper Cycles of two competing macroeconomic systems within a certain version of the Goodwin model
\inbook Algebra, geometry, differential equations
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2022
\vol 216
\pages 76--87
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into1083}
\crossref{https://doi.org/10.36535/0233-6723-2022-216-76-87}
Linking options:
  • https://www.mathnet.ru/eng/into1083
  • https://www.mathnet.ru/eng/into/v216/p76
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
    Statistics & downloads:
    Abstract page:41
    Full-text PDF :20
    References:18
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024