Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2022, Volume 216, Pages 66–75
DOI: https://doi.org/10.36535/0233-6723-2022-216-66-75
(Mi into1082)
 

Invariant tori of the weakly dissipative version of the Ginzburg—Landau equation

A. N. Kulikov

P.G. Demidov Yaroslavl State University
References:
Abstract: We consider a periodic boundary value-problem for a weakly dissipative variant of the complex Ginzburg– Landau equation in the case where the period (wavelength) is small. The possibility of the existence of finite-dimensional invariant tori is proved. For solutions that belong to such tori, asymptotic formulas are obtained. We prove that all invariant tori, except for tori of dimension one (i.e., limit cycles), are unstable. We used various methods of the theory of dynamical systems with an infinite-dimensional space of initial conditions, for example, the method of integral (invariant) manifolds, the method of normal forms, and methods of perturbation theory.
Keywords: complex Ginzburg–Landau equation, periodic boundary-value problem, invariant torus, stability, asymptotic formula, small parameter.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation 075-02-2021-1397
This work was performed within the framework of the program for the development of the Regional Scientific and Educational Mathematical Center at the Yaroslavl State University and was supported by the Ministry of Science and Higher Education of the Russian Federation (project No. 075-02-2021-1397).
Document Type: Article
UDC: 517.929
MSC: 35B41, 35Q56, 37G35
Language: Russian
Citation: A. N. Kulikov, “Invariant tori of the weakly dissipative version of the Ginzburg—Landau equation”, Algebra, geometry, differential equations, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 216, VINITI, Moscow, 2022, 66–75
Citation in format AMSBIB
\Bibitem{Kul22}
\by A.~N.~Kulikov
\paper Invariant tori of the weakly dissipative version of the Ginzburg---Landau equation
\inbook Algebra, geometry, differential equations
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2022
\vol 216
\pages 66--75
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into1082}
\crossref{https://doi.org/10.36535/0233-6723-2022-216-66-75}
Linking options:
  • https://www.mathnet.ru/eng/into1082
  • https://www.mathnet.ru/eng/into/v216/p66
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
    Statistics & downloads:
    Abstract page:58
    Full-text PDF :23
    References:15
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024