Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2022, Volume 216, Pages 57–65
DOI: https://doi.org/10.36535/0233-6723-2022-216-57-65
(Mi into1081)
 

Some problems of convex analysis in the Lobachevsky space

A. V. Kostin, N. N. Kostina

Elabuga Branch of Kazan (Volga Region) Federal University
References:
Abstract: The shadow problem in the Euclidean space was posed by G. Khudaiberganov in 1982. Its solution for dimensions ${>}2$ and various generalizations were obtained by a group of Ukrainian mathematicians led by Yu. B. Zelinsky in 2015. In this paper, we consider some variations of such problems and their generalizations in the Lobachevsky space and a closed lighting problem for the Lobachevsky space. In the Euclidean space, this problem was posed by V. G. Boltyansky.
Keywords: Lobachevsky space, generalized convexity, shadow problem, lighting problem, sphere, ball, horocycle.
Document Type: Article
UDC: 514.13; 514.752
MSC: 53A35, 53B30
Language: Russian
Citation: A. V. Kostin, N. N. Kostina, “Some problems of convex analysis in the Lobachevsky space”, Algebra, geometry, differential equations, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 216, VINITI, Moscow, 2022, 57–65
Citation in format AMSBIB
\Bibitem{KosKos22}
\by A.~V.~Kostin, N.~N.~Kostina
\paper Some problems of convex analysis in the Lobachevsky space
\inbook Algebra, geometry, differential equations
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2022
\vol 216
\pages 57--65
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into1081}
\crossref{https://doi.org/10.36535/0233-6723-2022-216-57-65}
Linking options:
  • https://www.mathnet.ru/eng/into1081
  • https://www.mathnet.ru/eng/into/v216/p57
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
    Statistics & downloads:
    Abstract page:138
    Full-text PDF :62
    References:30
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024