Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2022, Volume 216, Pages 12–28
DOI: https://doi.org/10.36535/0233-6723-2022-216-12-28
(Mi into1077)
 

Lie algebras of projective motions of five-dimensional pseudo-Riemannian spaces. V. Lie algebras of projective and affine motions of $h$-spaces $H_{221}$ of type $\{221\}$

A. V. Aminova, D. R. Khakimov

Kazan (Volga Region) Federal University, Faculty of Physics
References:
Abstract: This work is devoted to the problem of studying multidimensional pseudo-Riemannian manifolds that admit Lie algebras of infinitesimal projective (in particular, affine) transformations, wider than Lie algebras of infinitesimal homotheties. Such manifolds have numerous geometric and physical applications. This paper is the final part of the work. The first part: Itogi Nauki i Tekhniki. Sovremennaya Matematika i Ee Prilozheniya. Tematicheskie Obzory. — 2022. — 212. — P. 10–29. The second part: Itogi Nauki i Tekhniki. Sovremennaya Matematika i Ee Prilozheniya. Tematicheskie Obzory. — 2022. — xxx. — P. 10–37. The third part: Itogi Nauki i Tekhniki. Sovremennaya Matematika i Ee Prilozheniya. Tematicheskie Obzory. — 2022. — xxx. — P. 3–20. The fourth part: Itogi Nauki i Tekhniki. Sovremennaya Matematika i Ee Prilozheniya. Tematicheskie Obzory. — 2022. — xxx. — P. 18–31.
Keywords: differential geometry, five-dimensional pseudo-Riemannian manifold, $h$-space, system of partial differential equations, nonhomothetical projective motion, Killing equation, projective Lie algebra.
Document Type: Article
UDC: 514.763
MSC: 53Z05
Language: Russian
Citation: A. V. Aminova, D. R. Khakimov, “Lie algebras of projective motions of five-dimensional pseudo-Riemannian spaces. V. Lie algebras of projective and affine motions of $h$-spaces $H_{221}$ of type $\{221\}$”, Algebra, geometry, differential equations, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 216, VINITI, Moscow, 2022, 12–28
Citation in format AMSBIB
\Bibitem{AmiKha22}
\by A.~V.~Aminova, D.~R.~Khakimov
\paper Lie algebras of projective motions of five-dimensional pseudo-Riemannian spaces. V. Lie algebras of projective and affine motions of $h$-spaces $H_{221}$ of type $\{221\}$
\inbook Algebra, geometry, differential equations
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2022
\vol 216
\pages 12--28
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into1077}
\crossref{https://doi.org/10.36535/0233-6723-2022-216-12-28}
Linking options:
  • https://www.mathnet.ru/eng/into1077
  • https://www.mathnet.ru/eng/into/v216/p12
    Cycle of papers
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
    Statistics & downloads:
    Abstract page:74
    Full-text PDF :20
    References:26
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024