Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2022, Volume 216, Pages 3–11
DOI: https://doi.org/10.36535/0233-6723-2022-216-3-11
(Mi into1076)
 

On the stability of the trivial solution to a periodic system of ordinary differential equations

V. V. Abramov

Ryazan State University S. A. Esenin
References:
Abstract: In this paper, we examine a normal system of ordinary differential equations whose right-hand side is periodic in the independent variable and locally smoothly depends on the small parameter and the phase variable. Using the properties of nonlinear approximations of the right and left monodromy operators, we prove conditions that guarantee the arbitrary smallness of perturbed solutions for sufficiently small initial values of the solutions and the parameter.
Keywords: differential equation, small parameter, stability, monodromy operator.
Document Type: Article
UDC: 517.925.51
MSC: 34D20, 34C25
Language: Russian
Citation: V. V. Abramov, “On the stability of the trivial solution to a periodic system of ordinary differential equations”, Algebra, geometry, differential equations, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 216, VINITI, Moscow, 2022, 3–11
Citation in format AMSBIB
\Bibitem{Abr22}
\by V.~V.~Abramov
\paper On the stability of the trivial solution to a periodic system of ordinary differential equations
\inbook Algebra, geometry, differential equations
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2022
\vol 216
\pages 3--11
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into1076}
\crossref{https://doi.org/10.36535/0233-6723-2022-216-3-11}
Linking options:
  • https://www.mathnet.ru/eng/into1076
  • https://www.mathnet.ru/eng/into/v216/p3
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025