Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2022, Volume 215, Pages 73–80
DOI: https://doi.org/10.36535/0233-6723-2022-215-73-80
(Mi into1073)
 

Beltrami theorem in Minkowski space

A. V. Kostin

Elabuga Branch of Kazan (Volga Region) Federal University
References:
Abstract: E. Beltrami proved a theorem on the relationship of curvatures for families of surfaces of revolution in the three-dimensional Euclidean space, which implies that if some surface of revolution $M'$ orthogonally intersects all surfaces obtained from a surface of constant curvature $M$ by translations along the rotation axis, then the curvature of the surface $M'$ is also constant and differs from the curvature of the surface $M$ only in sign. In this paper, we obtain analogs of this theorem for surfaces of revolution in the three-dimensional Minkowski space.
Keywords: Minkowski space, surface of revolution, Lobachevsky plane, de Sitter plane, space of constant curvature, pseudosphere.
Document Type: Article
UDC: 514.13; 514.752
MSC: 53A35, 53B30
Language: Russian
Citation: A. V. Kostin, “Beltrami theorem in Minkowski space”, Algebra, Geometry, and Combinatorics, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 215, VINITI, Moscow, 2022, 73–80
Citation in format AMSBIB
\Bibitem{Kos22}
\by A.~V.~Kostin
\paper Beltrami theorem in Minkowski space
\inbook Algebra, Geometry, and Combinatorics
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2022
\vol 215
\pages 73--80
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into1073}
\crossref{https://doi.org/10.36535/0233-6723-2022-215-73-80}
Linking options:
  • https://www.mathnet.ru/eng/into1073
  • https://www.mathnet.ru/eng/into/v215/p73
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
    Statistics & downloads:
    Abstract page:150
    Full-text PDF :86
    References:38
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024