Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2022, Volume 215, Pages 68–72
DOI: https://doi.org/10.36535/0233-6723-2022-215-68-72
(Mi into1072)
 

Spaces with polylinear forms

N. I. Gusevaab, E. V. Lukyanovab

a All-Russian Institute for Scientific and Technical Information of Russian Academy of Sciences, Moscow
b Moscow State Pedagogical University
References:
Abstract: We consider spaces with multilinear forms whose degree is greater than two. The motion groups of such spaces are subgroups of the general linear group whose transformations preserve the given multilinear form. The search for such groups becomes simpler if the multilinear form is defined on the linear space of some algebra and possesses the multiplicative property with respect to multiplication in this algebra. We prove that such a form exists in any associative algebra.
Keywords: linear algebra, associative algebra, multiplicative function, space with multilinear form, cyclic algebra.
Document Type: Article
UDC: 512.6
Language: Russian
Citation: N. I. Guseva, E. V. Lukyanova, “Spaces with polylinear forms”, Algebra, Geometry, and Combinatorics, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 215, VINITI, Moscow, 2022, 68–72
Citation in format AMSBIB
\Bibitem{GusLuk22}
\by N.~I.~Guseva, E.~V.~Lukyanova
\paper Spaces with polylinear forms
\inbook Algebra, Geometry, and Combinatorics
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2022
\vol 215
\pages 68--72
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into1072}
\crossref{https://doi.org/10.36535/0233-6723-2022-215-68-72}
Linking options:
  • https://www.mathnet.ru/eng/into1072
  • https://www.mathnet.ru/eng/into/v215/p68
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
    Statistics & downloads:
    Abstract page:76
    Full-text PDF :35
    References:17
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024