Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2022, Volume 215, Pages 58–67
DOI: https://doi.org/10.36535/0233-6723-2022-215-58-67
(Mi into1071)
 

Asymptotical enumeration of some abeled geodetic graphs

V. A. Voblyi

All-Russian Institute for Scientific and Technical Information of Russian Academy of Sciences, Moscow
References:
Abstract: We asymptotically enumerate labeled geodetic $k$-cyclic cacti and obtain asymptotics for the numbers of labeled connected geodetic unicyclic, bicyclic, and tricyclic $n$-vertex graphs. We prove that under the uniform probability distribution, the probabilities that a random labeled connected unicyclic, bicyclic, or tricyclic graph is a geodetic graph are asymptotically equal to $1/2$, $3/20$, and $1/30$, respectively. In addition, we prove that almost all labeled connected geodetic tricyclic graphs are cacti.
Keywords: enumeration, labeled graph, geodetic graph, cactus, $k$-cyclic graph, asymptotics, random graph.
Document Type: Article
UDC: 519.175.3
MSC: 05C30
Language: Russian
Citation: V. A. Voblyi, “Asymptotical enumeration of some abeled geodetic graphs”, Algebra, Geometry, and Combinatorics, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 215, VINITI, Moscow, 2022, 58–67
Citation in format AMSBIB
\Bibitem{Vob22}
\by V.~A.~Voblyi
\paper Asymptotical enumeration of some abeled geodetic graphs
\inbook Algebra, Geometry, and Combinatorics
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2022
\vol 215
\pages 58--67
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into1071}
\crossref{https://doi.org/10.36535/0233-6723-2022-215-58-67}
Linking options:
  • https://www.mathnet.ru/eng/into1071
  • https://www.mathnet.ru/eng/into/v215/p58
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
    Statistics & downloads:
    Abstract page:62
    Full-text PDF :42
    References:19
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024