Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2022, Volume 215, Pages 40–51
DOI: https://doi.org/10.36535/0233-6723-2022-215-40-51
(Mi into1069)
 

This article is cited in 3 scientific papers (total in 3 papers)

Geometric approach to the problem of optimal scalar control of two nonsynchronous oscillators

L. M. Berlin, A. A. Galyaev, P. V. Lysenko

V. A. Trapeznikov Institute of Control Sciences of Russian Academy of Sciences, Moscow
References:
Abstract: The problem of optimal scalar control of a system of two independent harmonic oscillators is considered. For the solution, methods of geometric control theory are used. The vertical subsystem of the Hamiltonian system is examined. Optimal solutions are found in control classes with various number of switchings. Analytical results are illustrated by simulation.
Keywords: geometric theory, optimal control, harmonic oscillator, Pontryagin's maximum principle, Lie algebra.
Funding agency
This work was supported by the Program for the development of youth scientific schools of the Institute of Control Sciences RAS 2020–2021.
Document Type: Article
UDC: 517.977
MSC: 49K15, 22E60
Language: Russian
Citation: L. M. Berlin, A. A. Galyaev, P. V. Lysenko, “Geometric approach to the problem of optimal scalar control of two nonsynchronous oscillators”, Algebra, Geometry, and Combinatorics, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 215, VINITI, Moscow, 2022, 40–51
Citation in format AMSBIB
\Bibitem{BerGalLys22}
\by L.~M.~Berlin, A.~A.~Galyaev, P.~V.~Lysenko
\paper Geometric approach to the problem of optimal scalar control of two nonsynchronous oscillators
\inbook Algebra, Geometry, and Combinatorics
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2022
\vol 215
\pages 40--51
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into1069}
\crossref{https://doi.org/10.36535/0233-6723-2022-215-40-51}
Linking options:
  • https://www.mathnet.ru/eng/into1069
  • https://www.mathnet.ru/eng/into/v215/p40
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025