Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2022, Volume 215, Pages 32–39
DOI: https://doi.org/10.36535/0233-6723-2022-215-32-39
(Mi into1068)
 

On the geometry of orbits of Killing vector fields

Zh. O. Aslonov

National University of Uzbekistan named after M. Ulugbek, Tashkent
References:
Abstract: This paper is a brief review of results in the theory of Killing vector fields defined on Riemannian manifolds of constant and nonnegative curvature.
Keywords: vector field, Killing vector field, orbifold, Lie bracket, foliation, Riemannian foliation.
Funding agency Grant number
SCST of the Republic of Uzbekistan Ф3-2020092531
This work was supported by a grant for fundamental research (project Ф3-2020092531).
Document Type: Article
UDC: 514.76
MSC: 58K45, 17B66, 32S65
Language: Russian
Citation: Zh. O. Aslonov, “On the geometry of orbits of Killing vector fields”, Algebra, Geometry, and Combinatorics, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 215, VINITI, Moscow, 2022, 32–39
Citation in format AMSBIB
\Bibitem{Asl22}
\by Zh.~O.~Aslonov
\paper On the geometry of orbits of Killing vector fields
\inbook Algebra, Geometry, and Combinatorics
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2022
\vol 215
\pages 32--39
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into1068}
\crossref{https://doi.org/10.36535/0233-6723-2022-215-32-39}
Linking options:
  • https://www.mathnet.ru/eng/into1068
  • https://www.mathnet.ru/eng/into/v215/p32
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025