Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2022, Volume 215, Pages 3–17
DOI: https://doi.org/10.36535/0233-6723-2022-215-3-17
(Mi into1066)
 

Special uniform Vinberg cones and their applications

D. V. Alekseevskiiab

a Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevich Institute), Moscow
b University of Hradec Králové
References:
Abstract: In this paper, we present basic facts of Vinberg's theory of homogeneous convex cones, primarily the special Vinberg cones associated with Clifford modules, and their generalization. Applications of the cone theory to differential geometry, physics (including supergravity), information geometry, convex programming, and differential equations are briefly discussed.
Keywords: convex cone, Vinberg cone, Clifford module, differential geometry.
Document Type: Article
UDC: 512.5; 514.744
MSC: 13Jxx
Language: Russian
Citation: D. V. Alekseevskii, “Special uniform Vinberg cones and their applications”, Algebra, Geometry, and Combinatorics, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 215, VINITI, Moscow, 2022, 3–17
Citation in format AMSBIB
\Bibitem{Ale22}
\by D.~V.~Alekseevskii
\paper Special uniform Vinberg cones and their applications
\inbook Algebra, Geometry, and Combinatorics
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2022
\vol 215
\pages 3--17
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into1066}
\crossref{https://doi.org/10.36535/0233-6723-2022-215-3-17}
Linking options:
  • https://www.mathnet.ru/eng/into1066
  • https://www.mathnet.ru/eng/into/v215/p3
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025