Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2022, Volume 214, Pages 82–106
DOI: https://doi.org/10.36535/0233-6723-2022-214-82-106
(Mi into1064)
 

This article is cited in 4 scientific papers (total in 4 papers)

Integrable homogeneous dynamical systems with dissipation on the tangent bundles of smooth finite-dimensional manifolds. I. Equations of geodesics on the tangent bundle of a smooth $n$-dimensional manifold

M. V. Shamolin

Lomonosov Moscow State University
Full-text PDF (330 kB) Citations (4)
References:
Abstract: In many problems of dynamics, systems arise whose position spaces are four-dimensional manifolds. Naturally, the phase spaces of such systems are the tangent bundles of the corresponding manifolds. Dynamical systems considered have variable dissipation, and the complete list of first integrals consists of transcendental functions expressed in terms of finite combinations of elementary functions. In this paper, we prove the integrability of more general classes of homogeneous dynamical systems with variable dissipation on tangent bundles of four-dimensional manifolds.
Keywords: dynamical system, nonconservative field, integrability, transcendental first integral.
Bibliographic databases:
Document Type: Article
UDC: 517.9; 531.01
MSC: 34Cxx, 70Cxx
Language: Russian
Citation: M. V. Shamolin, “Integrable homogeneous dynamical systems with dissipation on the tangent bundles of smooth finite-dimensional manifolds. I. Equations of geodesics on the tangent bundle of a smooth $n$-dimensional manifold”, Algebra, Geometry, and Combinatorics, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 214, VINITI, Moscow, 2022, 82–106
Citation in format AMSBIB
\Bibitem{Sha22}
\by M.~V.~Shamolin
\paper Integrable homogeneous dynamical systems with dissipation on the tangent bundles of smooth finite-dimensional manifolds. I. Equations of geodesics on the tangent bundle of a smooth $n$-dimensional manifold
\inbook Algebra, Geometry, and Combinatorics
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2022
\vol 214
\pages 82--106
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into1064}
\crossref{https://doi.org/10.36535/0233-6723-2022-214-82-106}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1679116}
Linking options:
  • https://www.mathnet.ru/eng/into1064
  • https://www.mathnet.ru/eng/into/v214/p82
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
    Statistics & downloads:
    Abstract page:83
    Full-text PDF :25
    References:28
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024