|
This article is cited in 4 scientific papers (total in 4 papers)
Integrable homogeneous dynamical systems with dissipation on the tangent bundles of smooth finite-dimensional manifolds. I. Equations of geodesics on the tangent bundle of a smooth $n$-dimensional manifold
M. V. Shamolin Lomonosov Moscow State University
Abstract:
In many problems of dynamics, systems arise whose position spaces are four-dimensional manifolds. Naturally, the phase spaces of such systems are the tangent bundles of the corresponding manifolds. Dynamical systems considered have variable dissipation, and the complete list of first integrals consists of transcendental functions expressed in terms of finite combinations of elementary functions. In this paper, we prove the integrability of more general classes of homogeneous dynamical systems with variable dissipation on tangent bundles of four-dimensional manifolds.
Keywords:
dynamical system, nonconservative field, integrability, transcendental first integral.
Citation:
M. V. Shamolin, “Integrable homogeneous dynamical systems with dissipation on the tangent bundles of smooth finite-dimensional manifolds. I. Equations of geodesics on the tangent bundle of a smooth $n$-dimensional manifold”, Algebra, Geometry, and Combinatorics, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 214, VINITI, Moscow, 2022, 82–106
Linking options:
https://www.mathnet.ru/eng/into1064 https://www.mathnet.ru/eng/into/v214/p82
|
Statistics & downloads: |
Abstract page: | 83 | Full-text PDF : | 25 | References: | 28 |
|