Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2022, Volume 214, Pages 76–81
DOI: https://doi.org/10.36535/0233-6723-2022-214-76-81
(Mi into1063)
 

Hypersurfaces with constant principal curvatures in Euclidean space $V^{n+1}$

E. Yu. Kuzmina

Irkutsk State University
References:
Abstract: Hypersurfaces in $E^{n+1}$ for which a thin fan is found are considered. It is shown that it exists only for hypersurfaces in $E^{n+1}$ with constant or proportional principal curvatures that differ from each other. The conditions for the existence of hypersurfaces in the Euclidean space $V^{n+1}$, whose main curvatures are constant (assuming that all the main curvatures are different from each other), are clarified.
Keywords: $G$-structures, differentiable manifold, structural function, thin fan, initial pair.
Document Type: Article
UDC: 514.76
MSC: 53A05
Language: Russian
Citation: E. Yu. Kuzmina, “Hypersurfaces with constant principal curvatures in Euclidean space $V^{n+1}$”, Algebra, Geometry, and Combinatorics, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 214, VINITI, Moscow, 2022, 76–81
Citation in format AMSBIB
\Bibitem{Kuz22}
\by E.~Yu.~Kuzmina
\paper Hypersurfaces with constant principal curvatures in Euclidean space $V^{n+1}$
\inbook Algebra, Geometry, and Combinatorics
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2022
\vol 214
\pages 76--81
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into1063}
\crossref{https://doi.org/10.36535/0233-6723-2022-214-76-81}
Linking options:
  • https://www.mathnet.ru/eng/into1063
  • https://www.mathnet.ru/eng/into/v214/p76
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
    Statistics & downloads:
    Abstract page:76
    Full-text PDF :27
    References:19
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024