Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2022, Volume 214, Pages 37–43
DOI: https://doi.org/10.36535/0233-6723-2022-214-37-43
(Mi into1058)
 

On the class of polynomially stable Boolean functions

O. V. Zubkov

Irkutsk State University
References:
Abstract: The basic properties of polynomially stable Boolean functions are examined. We prove that any polynomially stable function can be represented as the sum of terms that are nonrepetitive in an elementary basis. Relationships between polynomially stable and symmetric Boolean functions are discussed and a criterion for polynomial stability is proved.
Keywords: operator for Boolean functions, Zhegalkin polynomial, repetition-free formula, polynomial stability, symmetric Boolean function, weight of a binary set.
Document Type: Article
UDC: 519.714.24
MSC: 93B50
Language: Russian
Citation: O. V. Zubkov, “On the class of polynomially stable Boolean functions”, Algebra, Geometry, and Combinatorics, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 214, VINITI, Moscow, 2022, 37–43
Citation in format AMSBIB
\Bibitem{Zub22}
\by O.~V.~Zubkov
\paper On the class of polynomially stable Boolean functions
\inbook Algebra, Geometry, and Combinatorics
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2022
\vol 214
\pages 37--43
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into1058}
\crossref{https://doi.org/10.36535/0233-6723-2022-214-37-43}
Linking options:
  • https://www.mathnet.ru/eng/into1058
  • https://www.mathnet.ru/eng/into/v214/p37
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025