Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2022, Volume 214, Pages 30–36
DOI: https://doi.org/10.36535/0233-6723-2022-214-30-36
(Mi into1057)
 

On a set of $E$-closed classes of multifunctions on a two-element set

A. S. Zinchenko, B. P. Ilyin, V. I. Panteleev, L. V. Ryabets

Irkutsk State University
References:
Abstract: In this paper, we consider closed classes of multifunctions defined on a two-element set and their closure operator based on the composition operator by union and the equality predicate branching operator. We show that the set of multifunctions that does not take the value of zero at any set of variables contains 76 E-closed classes.
Keywords: closure, equality predicate, multifunction, closed set, composition, precomplete set.
Document Type: Article
UDC: 519.716
MSC: 03B50, 08A99
Language: Russian
Citation: A. S. Zinchenko, B. P. Ilyin, V. I. Panteleev, L. V. Ryabets, “On a set of $E$-closed classes of multifunctions on a two-element set”, Algebra, Geometry, and Combinatorics, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 214, VINITI, Moscow, 2022, 30–36
Citation in format AMSBIB
\Bibitem{ZinIlyPan22}
\by A.~S.~Zinchenko, B.~P.~Ilyin, V.~I.~Panteleev, L.~V.~Ryabets
\paper On a set of $E$-closed classes of multifunctions on a two-element set
\inbook Algebra, Geometry, and Combinatorics
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2022
\vol 214
\pages 30--36
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into1057}
\crossref{https://doi.org/10.36535/0233-6723-2022-214-30-36}
Linking options:
  • https://www.mathnet.ru/eng/into1057
  • https://www.mathnet.ru/eng/into/v214/p30
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025