Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2022, Volume 213, Pages 96–109
DOI: https://doi.org/10.36535/0233-6723-2022-213-96-109
(Mi into1053)
 

This article is cited in 4 scientific papers (total in 4 papers)

Systems with dissipation with a finite number of degrees of freedom: analysis and integrability. III. Systems on the tangent bundles of smooth $n$-dimensional manifolds

M. V. Shamolin

Lomonosov Moscow State University
Full-text PDF (271 kB) Citations (4)
References:
Abstract: This paper is the third part of a survey on the integrability of systems with a large number $n$ of degrees of freedom (the first part: Itogi Nauki Tekhn. Sovr. Mat. Prilozh. Temat. Obzory, 211 (2022), pp. 41–74; the second part: Itogi Nauki Tekhn. Sovr. Mat. Prilozh. Temat. Obzory, 212 (2022), pp. 139–148). The review consists of three parts. In the first part, the primordial problem from the dynamics of a multidimensional rigid body placed in a nonconservative force field is described in detail. The second part is devoted to more general dynamical systems on the tangent bundles to the $n$-dimensional sphere. In this third part, we discuss dynamical systems on the tangent bundles to smooth manifolds of a sufficiently wide class. Theorems on sufficient conditions for the integrability of the considered dynamical systems in the class of transcendental functions are proved.
Keywords: dynamical system with a large number of degrees of freedom, integrability, transcendental first integral.
Document Type: Article
UDC: 517.9; 531.01
MSC: 34Cxx, 70Cxx
Language: Russian
Citation: M. V. Shamolin, “Systems with dissipation with a finite number of degrees of freedom: analysis and integrability. III. Systems on the tangent bundles of smooth $n$-dimensional manifolds”, Geometry, Mechanics, and Differential Equations, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 213, VINITI, Moscow, 2022, 96–109
Citation in format AMSBIB
\Bibitem{Sha22}
\by M.~V.~Shamolin
\paper Systems with dissipation with a finite number of degrees of freedom: analysis and integrability. III. Systems on the tangent bundles of smooth $n$-dimensional manifolds
\inbook Geometry, Mechanics, and Differential Equations
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2022
\vol 213
\pages 96--109
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into1053}
\crossref{https://doi.org/10.36535/0233-6723-2022-213-96-109}
Linking options:
  • https://www.mathnet.ru/eng/into1053
  • https://www.mathnet.ru/eng/into/v213/p96
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
    Statistics & downloads:
    Abstract page:98
    Full-text PDF :31
    References:34
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024