Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2022, Volume 213, Pages 63–71
DOI: https://doi.org/10.36535/0233-6723-2022-213-63-71
(Mi into1049)
 

On the solvability of control synthesis problems for nonlinear oscillatory optimization processes described by integro-differential equations

A. K. Kerimbekova, E. F. Abdyldaevab, A. A. Anarbekovaa

a Kyrgyz-Russian Slavic University named after B. N. Eltsin, Bishkek
b Kyrgyzstan-Turkey "MANAS" University, Bishkek
References:
Abstract: The solvability of synthesis problems for distributed and boundary controls in minimizing problems for piecewise linear functionals for oscillatory processes described by partial integro-differential equations with Fredholm integral operators are examined. For the Bellman functional, a specific integro-differential equation is obtained. An algorithm for constructing a solution of the control synthesis problem of distributed and boundary controls is described. A procedure for determining controls as functions (functionals) of the state of the controlled process is constructed.
Keywords: integro-differential equation, Fredholm operator, generalized solution, Bellman functional, Fréchet differential, optimal control synthesis.
Document Type: Article
UDC: 517.97
MSC: 49K20
Language: Russian
Citation: A. K. Kerimbekov, E. F. Abdyldaeva, A. A. Anarbekova, “On the solvability of control synthesis problems for nonlinear oscillatory optimization processes described by integro-differential equations”, Geometry, Mechanics, and Differential Equations, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 213, VINITI, Moscow, 2022, 63–71
Citation in format AMSBIB
\Bibitem{KerAbdAna22}
\by A.~K.~Kerimbekov, E.~F.~Abdyldaeva, A.~A.~Anarbekova
\paper On the solvability of control synthesis problems for nonlinear oscillatory optimization processes described by integro-differential equations
\inbook Geometry, Mechanics, and Differential Equations
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2022
\vol 213
\pages 63--71
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into1049}
\crossref{https://doi.org/10.36535/0233-6723-2022-213-63-71}
Linking options:
  • https://www.mathnet.ru/eng/into1049
  • https://www.mathnet.ru/eng/into/v213/p63
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025