Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2022, Volume 213, Pages 54–62
DOI: https://doi.org/10.36535/0233-6723-2022-213-54-62
(Mi into1048)
 

Construction of solutions to a degenerate reaction-diffusion system with a general nonlinearity in the cases of cylindrical and spherical symmetry

A. L. Kazakova, P. A. Kuznetsova, L. F. Spevakb

a Matrosov Institute for System Dynamics and Control Theory of Siberian Branch of Russian Academy of Sciences, Irkutsk
b Institute of Engineering Science, Urals Branch, Russian Academy of Sciences, Ekaterinburg
References:
Abstract: We consider a reaction-diffusion system with a general nonlinearity with cylindrical or spherical symmetry. For this system, we find a solution of the diffusion-wave type propagating over a zero background with a finite velocity. The solution is constructed as a Taylor series with recurrent coefficients whose convergence is proved by the majorant method and the Cauchy–Kovalevskaya theorem. The research is supplemented by numerical calculations based on the expansion in radial basis functions. This paper continues a series of our publications devoted to the study of wave-type solutions in the class of analytical functions.
Keywords: reaction-diffusion system, diffusion wave, power series, majorant method, radial basis functions, computational experiment.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation 121041300058-1
The results were obtained within the framework of the state assignment of the Russian Ministry of Education and Science under the project «Analytical and Numerical Methods of Mathematical Physics in Problems of Tomography, Quantum Field Theory, and Fluid and Gas Mechanics» (project No. 121041300058-1).
Document Type: Article
UDC: 517.957
MSC: 35K57, 35K40
Language: Russian
Citation: A. L. Kazakov, P. A. Kuznetsov, L. F. Spevak, “Construction of solutions to a degenerate reaction-diffusion system with a general nonlinearity in the cases of cylindrical and spherical symmetry”, Geometry, Mechanics, and Differential Equations, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 213, VINITI, Moscow, 2022, 54–62
Citation in format AMSBIB
\Bibitem{KazKuzSpe22}
\by A.~L.~Kazakov, P.~A.~Kuznetsov, L.~F.~Spevak
\paper Construction of solutions to a degenerate reaction-diffusion system with a general nonlinearity in the cases of cylindrical and spherical symmetry
\inbook Geometry, Mechanics, and Differential Equations
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2022
\vol 213
\pages 54--62
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into1048}
\crossref{https://doi.org/10.36535/0233-6723-2022-213-54-62}
Linking options:
  • https://www.mathnet.ru/eng/into1048
  • https://www.mathnet.ru/eng/into/v213/p54
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025