Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2022, Volume 213, Pages 47–53
DOI: https://doi.org/10.36535/0233-6723-2022-213-47-53
(Mi into1046)
 

Operator forms and methods of the maximum principle in optimal control problems with constraints

A. S. Buldaev, V. A. Dumnov

Buryat State University, Ulan-Ude
References:
Abstract: New constructive forms of well-known optimality conditions for constrained controlled systems in the form of fixed point problems in the control space are considered. Optimality conditions proposed allows one to apply the theory and methods of fixed points to develop new iterative algorithms for finding extremal controls in the class of constrained optimal control problems.
Keywords: controlled system with constraints, maximum principle, control operator, fixed point problem, iterative algorithm.
Funding agency Grant number
Russian Foundation for Basic Research 18-41-030005
This work was supported by the Russian Foundation for Basic Research (project 18-41-030005) and Buryat State University, a project of year 2021.
Document Type: Article
UDC: 517.977
MSC: 49M20
Language: Russian
Citation: A. S. Buldaev, V. A. Dumnov, “Operator forms and methods of the maximum principle in optimal control problems with constraints”, Geometry, Mechanics, and Differential Equations, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 213, VINITI, Moscow, 2022, 47–53
Citation in format AMSBIB
\Bibitem{BulDum22}
\by A.~S.~Buldaev, V.~A.~Dumnov
\paper Operator forms and methods of the maximum principle in optimal control problems with constraints
\inbook Geometry, Mechanics, and Differential Equations
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2022
\vol 213
\pages 47--53
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into1046}
\crossref{https://doi.org/10.36535/0233-6723-2022-213-47-53}
Linking options:
  • https://www.mathnet.ru/eng/into1046
  • https://www.mathnet.ru/eng/into/v213/p47
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
    Statistics & downloads:
    Abstract page:85
    Full-text PDF :34
    References:28
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024