Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2022, Volume 212, Pages 139–148
DOI: https://doi.org/10.36535/0233-6723-2022-212-139-148
(Mi into1042)
 

This article is cited in 6 scientific papers (total in 6 papers)

Systems with dissipation with a finite number of degrees of freedom: analysis and integrability. II. General class of dynamical systems on the tangent bundle of a multidimensional sphere

M. V. Shamolin

Lomonosov Moscow State University
Full-text PDF (237 kB) Citations (6)
References:
Abstract: This paper is the second part of a survey on the integrability of systems with a large number $n$ of degrees of freedom (the first part: Itogi Nauki Tekhn. Sovr. Mat. Prilozh. Temat. Obzory, 211 (2022), pp. 41–74). The review consists of three parts. In the first part, the primordial problem from the dynamics of a multidimensional rigid body placed in a nonconservative force field is described in detail. In this second part, we consider more general dynamical systems on the tangent bundles to the $n$-dimensional sphere. In the third part, which will be published in the next issue, we will consider dynamical systems on the tangent bundles to smooth manifolds of a sufficiently wide class. Theorems on sufficient conditions for the integrability of the considered dynamical systems in the class of transcendental functions are proved.
Keywords: dynamical system with a large number of degrees of freedom, integrability, transcendental first integral.
Document Type: Article
UDC: 517.9; 531.01
MSC: 34Cxx, 70Cxx
Language: Russian
Citation: M. V. Shamolin, “Systems with dissipation with a finite number of degrees of freedom: analysis and integrability. II. General class of dynamical systems on the tangent bundle of a multidimensional sphere”, Geometry, Mechanics, and Differential Equations, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 212, VINITI, Moscow, 2022, 139–148
Citation in format AMSBIB
\Bibitem{Sha22}
\by M.~V.~Shamolin
\paper Systems with~dissipation with~a finite number of degrees of freedom: analysis and ~integrability. II. General class of dynamical systems on the tangent bundle of a multidimensional sphere
\inbook Geometry, Mechanics, and Differential Equations
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2022
\vol 212
\pages 139--148
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into1042}
\crossref{https://doi.org/10.36535/0233-6723-2022-212-139-148}
Linking options:
  • https://www.mathnet.ru/eng/into1042
  • https://www.mathnet.ru/eng/into/v212/p139
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
    Statistics & downloads:
    Abstract page:87
    Full-text PDF :29
    References:33
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025