Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory, 2022, Volume 212, Pages 57–63
DOI: https://doi.org/10.36535/0233-6723-2022-212-57-63
(Mi into1034)
 

On small solutions of nonlinear operator equations with noninvertible operator in the principal term

R. Yu. Leontiev

Irkutsk State University
References:
Abstract: In this paper, we examine a nonlinear operator equation with vector parameter, which does not satisfy the implicit operator theorem since the operator in the principal term is not continuously invertible at a given point. We prove a sufficient conditions of existing small continuous solution and propose an algorithm of constructing such solution in some domain.
Keywords: Banach space, nonlinear operator, operator equation, continuous solution, sectorial neighborhood of zero.
Document Type: Article
UDC: 517.988
MSC: 47J99
Language: Russian
Citation: R. Yu. Leontiev, “On small solutions of nonlinear operator equations with noninvertible operator in the principal term”, Geometry, Mechanics, and Differential Equations, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 212, VINITI, Moscow, 2022, 57–63
Citation in format AMSBIB
\Bibitem{Leo22}
\by R.~Yu.~Leontiev
\paper On small solutions of nonlinear operator equations with noninvertible operator in the principal term
\inbook Geometry, Mechanics, and Differential Equations
\serial Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz.
\yr 2022
\vol 212
\pages 57--63
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/into1034}
\crossref{https://doi.org/10.36535/0233-6723-2022-212-57-63}
Linking options:
  • https://www.mathnet.ru/eng/into1034
  • https://www.mathnet.ru/eng/into/v212/p57
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory
    Statistics & downloads:
    Abstract page:54
    Full-text PDF :20
    References:21
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025