Itogi Nauki i Tekhniki. Seriya "Matematicheskii Analiz"
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhn. Ser. Mat. Anal.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Seriya "Matematicheskii Analiz", 1984, Volume 22, Pages 37–58 (Mi intm68)  

Quantization and the orbit method

V. A. Ginzburg
Abstract: A survey is given of the method of orbits which makes it possible to construct irreducible unitary representations of an arbitrary Lie group proceeding from mechanical considerations. After a brief introduction to symplectic geometry, a construction of a representation associated with an orbit of a group in the dual space of its Lie algebra is given. Various generalizations of this construction are discussed.
English version:
Journal of Soviet Mathematics, 1987, Volume 36, Issue 6, Pages 659–672
DOI: https://doi.org/10.1007/BF01085503
Bibliographic databases:
UDC: 517.986.4+517.958
Language: Russian
Citation: V. A. Ginzburg, “Quantization and the orbit method”, Itogi Nauki i Tekhn. Ser. Mat. Anal., 22, VINITI, Moscow, 1984, 37–58; J. Soviet Math., 36:6 (1987), 659–672
Citation in format AMSBIB
\Bibitem{Gin84}
\by V.~A.~Ginzburg
\paper Quantization and the orbit method
\serial Itogi Nauki i Tekhn. Ser. Mat. Anal.
\yr 1984
\vol 22
\pages 37--58
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/intm68}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=780560}
\zmath{https://zbmath.org/?q=an:0616.58019}
\transl
\jour J. Soviet Math.
\yr 1987
\vol 36
\issue 6
\pages 659--672
\crossref{https://doi.org/10.1007/BF01085503}
Linking options:
  • https://www.mathnet.ru/eng/intm68
  • https://www.mathnet.ru/eng/intm/v22/p37
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:480
    Full-text PDF :246
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024