Trudy Geometricheskogo Seminara
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Ser. Probl. Geom. Tr. Geom. Sem.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Geometricheskogo Seminara, 1973, Volume 4, Pages 231–267 (Mi intg46)  

Spaces defined by Lie group endomorphisms ($\Phi$-spaces)

A. S. Fedenko
Abstract: А $\Phi$-space is a triple $(G,H,\Phi)$ consisting of a connected Lie group $G$, a closed subgroup $H$ of $G$ and an analytic endomorphism $\Phi$ of $G$ such that $H$ lies between $G^\Phi$ and the identity component of $G^\Phi$, where $G^\Phi$ denotes the closed subgroup of $G$ formed by all the elements left fixed by $\Phi$. The symmetric space is obtained in the case $\Phi^2=1$. A local triple is triple $\mathfrak g,\mathfrak h,\varphi$ consisting of the finite-dimensional real Lie algebra $\mathfrak g$, a subalgebra $\mathfrak h$ of $\mathfrak g$, and an endomorphism $\varphi$ of $\mathfrak g$ such that $\mathfrak h$ consist of all elements of $\mathfrak g$ left fixed by $\varphi$. If $\varphi^2=1$, then $(\mathfrak g,\mathfrak h,\varphi)$ is a symmetric Lie algebra.
Every $\Phi$-space $(G,H,\Phi)$ gives rise to a local triple $(\mathfrak g,\mathfrak h,\varphi)$ in a natural manner; $\mathfrak g$ and $\mathfrak h$ are the Lie algebras of $G$ and $H$, respectively, and $\varphi=d\Phi_e$, where $e$ is identity element of $G$. Conversely, if $(\mathfrak g,\mathfrak h,\varphi)$ is a local triple and if $G$ is a connected, simply connected Lie group with Lie algebra $\mathfrak g$, then the endomorphism $\varphi$ of $\mathfrak g$ induces an endomorphism $\Phi$ of $G$ and, for any subgroup $H$ lying between $G^\Phi$ and the identity component of $G^\Phi$, the triple $(G,H,\Phi)$ is а $\Phi$-space. In § 4 all $\Phi$-spaces are described which generate the local triple $(\mathfrak g,\mathfrak h,\varphi)$, where $\mathfrak g$ is the semi-simple compact Lie algebra. In § 5 $\Phi$-space $(G,Н,\Phi)$ is considered for which $G$ is the semisimple compact Lie group acting effectively on $G/H$ and $\Phi$ is of finite order. It is shown that the identity component of a group of isometries of space $G/H$ coincides with $G$. In § 6 a classification of periodic automorphisms of classical compact groups and corresponding $\Phi$-spaces is given. In § 7 is considered a corresponding classification for classical noncompact groups. This classification is based on the results of § 6 and on a Theorem in [20]. Let $G$ be a Lie group with a finite number of connected compo nents, and let $A$ be a finite subgroup of the group of automorphisms of $G$. Then there exists a maximal ompact subgroup $K$ of $G$ which is stable under $A$.
Bibliographic databases:
Language: Russian
Citation: A. S. Fedenko, “Spaces defined by Lie group endomorphisms ($\Phi$-spaces)”, Tr. Geom. Sem., 4, VINITI, Moscow, 1973, 231–267
Citation in format AMSBIB
\Bibitem{Fed73}
\by A.~S.~Fedenko
\paper Spaces defined by Lie group endomorphisms ($\Phi$-spaces)
\serial Tr. Geom. Sem.
\yr 1973
\vol 4
\pages 231--267
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/intg46}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=380673}
\zmath{https://zbmath.org/?q=an:0305.53033}
Linking options:
  • https://www.mathnet.ru/eng/intg46
  • https://www.mathnet.ru/eng/intg/v4/p231
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:277
    Full-text PDF :100
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024