Processing math: 100%
Trudy Geometricheskogo Seminara
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Ser. Probl. Geom. Tr. Geom. Sem.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Geometricheskogo Seminara, 1971, Volume 3, Pages 149–172 (Mi intg33)  

A nonholonomic complex of the space P4

S. I. Grigelionis
Abstract: Let L be the six-dimensional manifold of all straight lines l of the four-dimensional projective space P4, and let Ξ be the six-dimensional manifold of all two-dimensional planes ξ of the same space. The twelve-parametric manifold L×Ξ will be denoted by ˜S. We shall associate a three-dimensional manifold Кξ of all projective mappings kξl of the points of l onto the sheaf of hyperplanes the axis of which is ξ to each element (l,ξ) of ˜S. The fifteen-dimensional manifold of all triplets (l,ξ,kξl) may be regarded as a fibre bundle with the base ˜S. The eight-dimensional submanifold formed by all those elements (l,ξ)˜S for which l and ξ are incident will be denoted by S, and the restriction of the fibre space ˜T over the manifold S will be denoted by T. In canonical way we define a mapping π of T onto L:(l,ξ,kξl). Thus we have a fibre bundle T with the base L and the canonical projection π. Then a non-holonomic complex of the space P4 is defined as a cross-section of the fibre bundle T.
In the paper the first neighbourhood of an element (l,ξ,kξl) of the non-holonomic complex of P4 is considered applying the G. F. Laptev method [3].
Bibliographic databases:
Language: Russian
Citation: S. I. Grigelionis, “A nonholonomic complex of the space P4”, Tr. Geom. Sem., 3, VINITI, Moscow, 1971, 149–172
Citation in format AMSBIB
\Bibitem{Gri71}
\by S.~I.~Grigelionis
\paper A nonholonomic complex of the space~$P_4$
\serial Tr. Geom. Sem.
\yr 1971
\vol 3
\pages 149--172
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/intg33}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=303436}
Linking options:
  • https://www.mathnet.ru/eng/intg33
  • https://www.mathnet.ru/eng/intg/v3/p149
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:290
    Full-text PDF :102
    References:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025