Itogi Nauki i Tekhniki. Seriya "Sovremennye Problemy Matematiki. Noveishie Dostizheniya"
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat. Nov. Dostizh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Seriya "Sovremennye Problemy Matematiki. Noveishie Dostizheniya", 1985, Volume 27, Pages 191–228 (Mi intd90)  

This article is cited in 2 scientific papers (total in 2 papers)

Operator algebras in statistical mechanics and noncommutative probability theory

V. V. Anshelevich, M. Sh. Goldstein
Abstract: The fundamental notions of statistical mechanics of quantum spin systems are introduced. A survey of the main properties of the states satisfying the Kubo–Martin–Schwinger boundary conditions is given. The problem of describing the invariant states and the first integrals for the multidimensional Heisenberg model is solved. A central limit theorem of noncommutative probability theory and a noncommutative analog of the individual ergodic theorem are formulated and proved. The asymptotics of the distribution of the eigenvalues of the multiparticle Schrödinger operator is studied.
English version:
Journal of Soviet Mathematics, 1987, Volume 37, Issue 6, Pages 1523–1553
DOI: https://doi.org/10.1007/BF01103857
Bibliographic databases:
UDC: 517.986+519.21
Language: Russian
Citation: V. V. Anshelevich, M. Sh. Goldstein, “Operator algebras in statistical mechanics and noncommutative probability theory”, Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat. Nov. Dostizh., 27, VINITI, Moscow, 1985, 191–228; J. Soviet Math., 37:6 (1987), 1523–1553
Citation in format AMSBIB
\Bibitem{AnsGol85}
\by V.~V.~Anshelevich, M.~Sh.~Goldstein
\paper Operator algebras in statistical mechanics and noncommutative probability theory
\serial Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat. Nov. Dostizh.
\yr 1985
\vol 27
\pages 191--228
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/intd90}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=824265}
\zmath{https://zbmath.org/?q=an:0619.46056}
\transl
\jour J. Soviet Math.
\yr 1987
\vol 37
\issue 6
\pages 1523--1553
\crossref{https://doi.org/10.1007/BF01103857}
Linking options:
  • https://www.mathnet.ru/eng/intd90
  • https://www.mathnet.ru/eng/intd/v27/p191
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:444
    Full-text PDF :219
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024