Itogi Nauki i Tekhniki. Seriya "Sovremennye Problemy Matematiki. Noveishie Dostizheniya"
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat. Nov. Dostizh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Seriya "Sovremennye Problemy Matematiki. Noveishie Dostizheniya", 1985, Volume 27, Pages 3–31 (Mi intd84)  

This article is cited in 6 scientific papers (total in 6 papers)

Operator KK-theory and its applications

G. G. Kasparov
Abstract: A survey of basic technical constructions associated with the KK-bifunctor is given along with main results obtained through it, statements of unsolved problems are given, some hypotheses are stated.
English version:
Journal of Soviet Mathematics, 1987, Volume 37, Issue 6, Pages 1373–1396
DOI: https://doi.org/10.1007/BF01103851
Bibliographic databases:
UDC: 517.986+512.66
Language: Russian
Citation: G. G. Kasparov, “Operator KK-theory and its applications”, Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat. Nov. Dostizh., 27, VINITI, Moscow, 1985, 3–31; J. Soviet Math., 37:6 (1987), 1373–1396
Citation in format AMSBIB
\Bibitem{Kas85}
\by G.~G.~Kasparov
\paper Operator $K$-theory and its applications
\serial Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat. Nov. Dostizh.
\yr 1985
\vol 27
\pages 3--31
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/intd84}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=824259}
\zmath{https://zbmath.org/?q=an:0616.46064}
\transl
\jour J. Soviet Math.
\yr 1987
\vol 37
\issue 6
\pages 1373--1396
\crossref{https://doi.org/10.1007/BF01103851}
Linking options:
  • https://www.mathnet.ru/eng/intd84
  • https://www.mathnet.ru/eng/intd/v27/p3
  • This publication is cited in the following 6 articles:
    1. Fabian R. Lux, Tom Stoiber, Shaoyun Wang, Guoliang Huang, Emil Prodan, “Topological spectral bands with frieze groups”, Journal of Mathematical Physics, 65:6 (2024)  crossref
    2. Emil Prodan, “Topological lattice defects by groupoid methods and Kasparov's KK-theory*”, J. Phys. A: Math. Theor., 54:42 (2021), 424001  crossref
    3. Maria Paula Gomez Aparicio, Pierre Julg, Alain Valette, Advances in Noncommutative Geometry, 2019, 127  crossref
    4. Emil Prodan, Hermann Schulz-Baldes, “Generalized Connes–Chern characters inKK-theory with an application to weak invariants of topological insulators”, Rev. Math. Phys., 28:10 (2016), 1650024  crossref
    5. V. E. Nazaikinskii, A. Yu. Savin, B. Yu. Sternin, “On the Poincaré isomorphism in KK-theory on manifolds with edges”, Journal of Mathematical Sciences, 170:2 (2010), 238–250  mathnet  crossref  mathscinet
    6. B. A. Plamenevskii, G. V. Rozenblum, “Pseudodifferential operators with discontinuous symbols: KK-theory and the index formula”, Funct. Anal. Appl., 26:4 (1992), 266–275  mathnet  crossref  mathscinet  zmath  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:665
    Full-text PDF :340
    References:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025