Loading [MathJax]/jax/output/CommonHTML/config.js
Itogi Nauki i Tekhniki. Seriya "Sovremennye Problemy Matematiki. Noveishie Dostizheniya"
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat. Nov. Dostizh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Seriya "Sovremennye Problemy Matematiki. Noveishie Dostizheniya", 1985, Volume 26, Pages 213–257 (Mi intd83)  

This article is cited in 8 scientific papers (total in 8 papers)

Lattices with modular identity and Lie algebras

A. A. Lashkhi
Abstract: The classification of Lie algebras over a principal ideal ring, the lattice of whose subalgebras satisfies a modular identity, is given.
English version:
Journal of Soviet Mathematics, 1987, Volume 38, Issue 2, Pages 1823–1853
DOI: https://doi.org/10.1007/BF01088205
Bibliographic databases:
UDC: 512.565+512.554.3
Language: Russian
Citation: A. A. Lashkhi, “Lattices with modular identity and Lie algebras”, Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat. Nov. Dostizh., 26, VINITI, Moscow, 1985, 213–257; J. Soviet Math., 38:2 (1987), 1823–1853
Citation in format AMSBIB
\Bibitem{Las85}
\by A.~A.~Lashkhi
\paper Lattices with modular identity and Lie algebras
\serial Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat. Nov. Dostizh.
\yr 1985
\vol 26
\pages 213--257
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/intd83}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=849789}
\zmath{https://zbmath.org/?q=an:0621.17003|0606.17005}
\transl
\jour J. Soviet Math.
\yr 1987
\vol 38
\issue 2
\pages 1823--1853
\crossref{https://doi.org/10.1007/BF01088205}
Linking options:
  • https://www.mathnet.ru/eng/intd83
  • https://www.mathnet.ru/eng/intd/v26/p213
  • This publication is cited in the following 8 articles:
    1. A. A. Lashkhi, “Projection of rational Lie rings”, Journal of Mathematical Sciences, 218:6 (2016), 794–802  mathnet  mathnet  crossref
    2. P. Gurtskaia, A. Lashkhi, “Modelling of Ring Geometry from von Neumann’s Point of View”, Journal of Mathematical Sciences, 191:6 (2013), 757–763  mathnet  mathnet  crossref
    3. T. Bokelavadze, A. Tavadze, “Subgroup Lattices of Hall’s W-Power Groups”, Journal of Mathematical Sciences, 191:6 (2013), 751–756  mathnet  mathnet  crossref
    4. A. Lashkhi, “Fundamental Theorem of Affine Geometry for Lie Algebras”, Journal of Mathematical Sciences, 191:6 (2013), 768–775  mathnet  mathnet  crossref
    5. M. G. Amaglobeli, “Power groups”, Journal of Mathematical Sciences, 186:6 (2012), 811–865  mathnet  mathnet  crossref
    6. M. G. Amaglobeli, “Free products in the category of A-groups over a ring A”, Journal of Mathematical Sciences, 186:5 (2012), 687–693  mathnet  mathnet  crossref
    7. A. Lashkhi, T. Gelashvili, “Lattices of subrepresentations of Lie algebras and their isomorphisms”, J Math Sci, 153:4 (2008), 518  crossref
    8. A. A. Lashkhi, “The fundamental theorem of projective geometry in modules and Lie algebras”, J. Soviet Math., 42:5 (1988), 1991–2008  mathnet  mathnet  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:356
    Full-text PDF :118
    References:1
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025