Loading [MathJax]/jax/output/SVG/config.js
Itogi Nauki i Tekhniki. Seriya "Sovremennye Problemy Matematiki. Noveishie Dostizheniya"
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat. Nov. Dostizh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Seriya "Sovremennye Problemy Matematiki. Noveishie Dostizheniya", 1984, Volume 24, Pages 3–80 (Mi intd71)  

This article is cited in 21 scientific papers (total in 22 papers)

Holomorphic supergeometry and Yang–Mills superfields

Yu. I. Manin
Abstract: The work is devoted to a description of the mathematical structures at the basis of supersymmetry — field theory in which the symmetry groups mix bosons and fermions. The approach developed is based on the theory of supertwistors.
English version:
Journal of Soviet Mathematics, 1985, Volume 30, Issue 2, Pages 1927–1975
DOI: https://doi.org/10.1007/BF02105859
Bibliographic databases:
Document Type: Article
UDC: 517.763+515.176+517.958
Language: Russian
Citation: Yu. I. Manin, “Holomorphic supergeometry and Yang–Mills superfields”, Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat. Nov. Dostizh., 24, VINITI, Moscow, 1984, 3–80; J. Soviet Math., 30:2 (1985), 1927–1975
Citation in format AMSBIB
\Bibitem{Man84}
\by Yu.~I.~Manin
\paper Holomorphic supergeometry and Yang--Mills superfields
\serial Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat. Nov. Dostizh.
\yr 1984
\vol 24
\pages 3--80
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/intd71}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=760997}
\zmath{https://zbmath.org/?q=an:0591.53071|0557.53051}
\transl
\jour J. Soviet Math.
\yr 1985
\vol 30
\issue 2
\pages 1927--1975
\crossref{https://doi.org/10.1007/BF02105859}
Linking options:
  • https://www.mathnet.ru/eng/intd71
  • https://www.mathnet.ru/eng/intd/v24/p3
  • This publication is cited in the following 22 articles:
    1. Nowar E. Koning, Sergei M. Kuzenko, Emmanouil S. N. Raptakis, “Embedding formalism for $ \mathcal{N} $-extended AdS superspace in four dimensions”, J. High Energ. Phys., 2023:11 (2023)  crossref
    2. Sergei M. Kuzenko, Gabriele Tartaglino-Mazzucchelli, “Supertwistor realisations of AdS superspaces”, Eur. Phys. J. C, 82:2 (2022)  crossref
    3. P. S. Howe, U. Lindström, “Superconformal geometries and local twistors”, J. High Energ. Phys., 2021:4 (2021)  crossref
    4. Arthemy V. Kiselev, Andrey O. Krutov, “On the (Non)Removability of Spectral Parameters in
      Z 2
      $\mathbb{Z}_{2}$ -Graded Zero-Curvature Representations and Its Applications”, Acta Appl Math, 160:1 (2019), 129  crossref
    5. Daniel Butter, Sergei M. Kuzenko, Joseph Novak, Gabriele Tartaglino-Mazzucchelli, “Conformal supergravity in five dimensions: new approach and applications”, J. High Energ. Phys., 2015:2 (2015)  crossref
    6. Sergei M. Kuzenko, D. Sorokin, “Superconformal structures on the three-sphere”, J. High Energ. Phys., 2014:10 (2014)  crossref
    7. Sergei M. Kuzenko, “Conformally compactified Minkowski superspaces revisited”, J. High Energ. Phys., 2012:10 (2012)  crossref
    8. Yu. I. Manin, “A computability challenge: asymptotic bounds for error-correcting codes”, Lecture Notes in Comput. Sci., 7160 (2012), 174–182  mathnet  crossref  scopus
    9. A. V. Kiselev, A. O. Krutov, “Gardner's deformations of the graded Korteweg–de Vries equations revisited”, Journal of Mathematical Physics, 53:10 (2012)  crossref
    10. Sergei M. Kuzenko, Jeong-Hyuck Park, Gabriele Tartaglino-Mazzucchelli, Rikard von Unge, “Off-shell superconformal nonlinear sigma-models in three dimensions”, J. High Energ. Phys., 2011:1 (2011)  crossref
    11. Tohru Nakashima, “AG codes from vector bundles”, Des. Codes Cryptogr., 57:1 (2010), 107  crossref
    12. Tohru Nakashima, “Minimum distance of relative Reed–Muller codes”, AAECC, 20:2 (2009), 123  crossref
    13. V. G. Drinfeld, V. A. Iskovskikh, A. I. Kostrikin, A. N. Tyurin, I. R. Shafarevich, “Yurii Ivanovich Manin (on his 60th birthday)”, Russian Math. Surveys, 52:4 (1997), 863–873  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    14. Arnaldo Garcia, Henning Stichtenoth, “A tower of Artin-Schreier extensions of function fields attaining the Drinfeld-Vladut bound”, Invent Math, 121:1 (1995), 211  crossref
    15. Gilles Lachaud, Jacques Stern, Sequences II, 1993, 59  crossref
    16. Kimio Ueno, Hirofumi Yamada, Conformal Field Theory and Solvable Lattice Models, 1988, 373  crossref
    17. Kimio Ueno, Hirofumi Yamada, Algebraic Analysis, 1988, 893  crossref
    18. J. Avan, “Alternative, superconformally covariant approach to the integrability of N = 3 supersymmetric Yang-Mills theory”, Physics Letters B, 197:1-2 (1987), 149  crossref
    19. J. Evan, “Superconformally covariant linear system for N = 3,4 supersymmetric Yang-Mills theory in four dimensions”, Physics Letters B, 190:1-2 (1987), 110  crossref
    20. A. Yu. Vaintrob, “Deformations of coherent sheaves on superspaces”, Russian Math. Surveys, 41:3 (1986), 237–238  mathnet  crossref  mathscinet  zmath  adsnasa  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:646
    Full-text PDF :338
    References:1
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025