Abstract:
A class of problems connected with the description of the motion of an attracted quantum particle in possibly time-dependent, periodic, external fields is studied on the basis of a development of the method of the inverse problem.
Citation:
S. P. Novikov, “Two-dimensional Schrödinger operators in periodic fields”, Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat., 23, VINITI, Moscow, 1983, 3–32; J. Soviet Math., 28:1 (1985), 1–20
This publication is cited in the following 38 articles:
L. I. Danilov, “On the spectrum of the Landau Hamiltonian perturbed by a periodic electric potential”, Sb. Math., 214:12 (2023), 1721–1750
L. I. Danilov, “Spectrum of the Landau Hamiltonian with a periodic electric potential”, Theoret. and Math. Phys., 202:1 (2020), 41–57
Yu. A. Kordyukov, I. A. Taimanov, “Trace formula for the magnetic Laplacian”, Russian Math. Surveys, 74:2 (2019), 325–361
L. I. Danilov, “O spektre dvumernogo operatora Shredingera s odnorodnym magnitnym polem i periodicheskim elektricheskim potentsialom”, Izv. IMI UdGU, 51 (2018), 3–41
Jen-Hsu Chang, “The interactions of solitons in the Novikov–Veselov equation”, Applicable Analysis, 95:6 (2016), 1370
P. G. Grinevich, A. E. Mironov, S. P. Novikov, “On the non-relativistic two-dimensional purely magnetic supersymmetric Pauli operator”, Russian Math. Surveys, 70:2 (2015), 299–329
Jen-Hsu Chang, “The Gould-Hopper polynomials in the Novikov-Veselov equation”, Journal of Mathematical Physics, 52:9 (2011)
P. G. Grinevich, A. E. Mironov, S. P. Novikov, “Zero level of a purely magnetic two-dimensional nonrelativistic Pauli operator for spin-1/21/2 particles”, Theoret. and Math. Phys., 164:3 (2010), 1110–1127
Christoph Bohle, Franz Pedit, Ulrich Pinkall, “The spectral curve of a quaternionic holomorphic line bundle over a 2-torus”, manuscripta math., 130:3 (2009), 311
Francisco Correa, Vít Jakubský, Luis-Miguel Nieto, Mikhail S. Plyushchay, “Self-Isospectrality, Special Supersymmetry, and their Effect on the Band Structure”, Phys. Rev. Lett., 101:3 (2008)
P. G. Grinevich, I. A. Taimanov, “Infinitesimal Darboux Transformations of the Spectral Curves of Tori in the Four-Space”, International Mathematics Research Notices, 2007 (2007)
J M Harrison, P Kuchment, A Sobolev, B Winn, “On occurrence of spectral edges for periodic operators inside the Brillouin zone”, J. Phys. A: Math. Theor., 40:27 (2007), 7597
Allal Ghanmi, “Euclidean limit ofL2-spectral properties of the Pauli Hamiltonians on constant curvature Riemann surfaces”, J. Phys. A: Math. Gen., 38:9 (2005), 1917
V. A. Vassiliev, “Spaces of Hermitian operators with simple spectra and their finite-order cohomology”, Mosc. Math. J., 3:3 (2003), 1145–1165
I. A. Taimanov, “On two-dimensional finite-gap potential Schrödinger and Dirac operators with singular spectral curves”, Siberian Math. J., 44:4 (2003), 686–694
J. Brüning, S. Yu. Dobrokhotov, K. V. Pankrashin, “The Asymptotic Form of the Lower Landau Bands in a Strong Magnetic Field”, Theoret. and Math. Phys., 131:2 (2002), 704–728
K. V. Pankrashin, “Locality of Quadratic Forms for Point Perturbations of Schrödinger Operators”, Math. Notes, 70:3 (2001), 384–391
Pavel Exner, Vladimir A. Geyler, “Berry phase in magnetic systems with point perturbations”, Journal of Geometry and Physics, 36:1-2 (2000), 178
O. I. Mokhov, “Symplectic and Poisson structures on loop spaces of smooth manifolds, and integrable systems”, Russian Math. Surveys, 53:3 (1998), 515–622
I. A. Taimanov, “Secants of Abelian varieties, theta functions, and soliton equations”, Russian Math. Surveys, 52:1 (1997), 147–218