Processing math: 100%
Itogi Nauki i Tekhniki. Seriya "Sovremennye Problemy Matematiki. Noveishie Dostizheniya"
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat. Nov. Dostizh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Seriya "Sovremennye Problemy Matematiki. Noveishie Dostizheniya", 1989, Volume 36, Pages 149–184 (Mi intd123)  

This article is cited in 15 scientific papers (total in 15 papers)

Necessary and sufficient conditions for the conservativity of dynamical semigroups

A. M. Chebotarev
Abstract: Dynamical semigroups constitute a quantum-mechanical generalization of Markov semigroups, a concept familiar from the theory of stochastic processes. Let H be a Hilbert space and A a von Neumann algebra. A dynamical semigroup Pt is a σ-weakly continuous one-parameter semigroup of completely positive maps of A into itself. A semigroup Pt possessing the property of preserving the identity IA is said to be conservative and its infinitesimal operator L[] is said to be regular. The present paper studies necessary and sufficient conditions for strongly continuous dynamical semigroups to be conservative. It is shown that under certain additional assumptions one can formulate necessary and sufficient conditions which are analogous to Feller's condition for regularity of a diffusion process: the equation P=L[P] has no solutions in A+. Using a Jensen-type inequality for completely positive maps, constructive sufficient conditions are obtained for conservativeness, in the form of inequalities for commutators. The restriction of a dynamical subgroup to an Abelian subalgebra of L(Rn) yields a series of new regularity conditions for both diffusion and jump processes.
English version:
Journal of Soviet Mathematics, 1991, Volume 56, Issue 5, Pages 2697–2719
DOI: https://doi.org/10.1007/BF01095977
Bibliographic databases:
UDC: 517.986.7
Language: Russian
Citation: A. M. Chebotarev, “Necessary and sufficient conditions for the conservativity of dynamical semigroups”, Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat. Nov. Dostizh., 36, VINITI, Moscow, 1989, 149–184; J. Soviet Math., 56:5 (1991), 2697–2719
Citation in format AMSBIB
\Bibitem{Che89}
\by A.~M.~Chebotarev
\paper Necessary and sufficient conditions for the conservativity of dynamical semigroups
\serial Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat. Nov. Dostizh.
\yr 1989
\vol 36
\pages 149--184
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/intd123}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1057199}
\zmath{https://zbmath.org/?q=an:0734.60079|0727.60083}
\transl
\jour J. Soviet Math.
\yr 1991
\vol 56
\issue 5
\pages 2697--2719
\crossref{https://doi.org/10.1007/BF01095977}
Linking options:
  • https://www.mathnet.ru/eng/intd123
  • https://www.mathnet.ru/eng/intd/v36/p149
  • This publication is cited in the following 15 articles:
    1. Jinshu Chen, Jie Hao, Mei Guo, “Quantum Bernoulli noises approach to quantum master equations and applications to Ehrenfest-type theorems”, Int. J. Quantum Inform., 23:01 (2025)  crossref
    2. G. G. Amosov, E. L. Baitenov, A. N. Pechen, “On reconstruction of states from evolution induced by quantum dynamical semigroups perturbed by covariant measures”, Quantum Inf. Process., 22 (2023), 401–14  mathnet  crossref  isi
    3. Franco Fagnola, Carlos M. Mora, “Basic Properties of a Mean Field Laser Equation”, Open Syst. Inf. Dyn., 26:03 (2019), 1950015  crossref
    4. I. Siemon, A. S. Holevo, R. F. Werner, “Unbounded generators of dynamical semigroups”, Open Syst. Inf. Dyn., 24:4 (2017), 1740015–24  mathnet  crossref  isi  scopus
    5. Alexander M. Chebotarev, Julio C. Garcia, Roberto B. Quezada, Stochastic Analysis and Mathematical Physics II, 2003, 9  crossref
    6. A. M. Chebotarev, S. Yu. Shustikov, “Conditions Sufficient for the Conservativity of a Minimal Quantum Dynamical Semigroup”, Math. Notes, 71:5 (2002), 692–710  mathnet  mathnet  crossref  crossref  isi  scopus
    7. S. Yu. Shustikov, “Regularity criterion for a mathematical model of the laser”, Math. Notes, 67:5 (2000), 665–671  mathnet  mathnet  crossref  crossref  isi
    8. V. P. Belavkin, Lecture Notes in Physics, 504-504, Irreversibility and Causality Semigroups and Rigged Hilbert Spaces, 1998, 82  crossref
    9. A. S. Holevo, Lecture Notes in Physics, 504-504, Irreversibility and Causality Semigroups and Rigged Hilbert Spaces, 1998, 67  crossref
    10. A. M. Chebotarev, “The quantum stochastic equation is unitarily equivalent to a symmetric boundary value problem for the Schrödinger equation”, Math. Notes, 61:4 (1997), 510–518  mathnet  crossref  crossref  mathscinet  zmath  isi
    11. A. M. Chebotarev, J. C. Garcia, R. B. Quezada, “On the Lindblad equation with unbounded time-dependent coefficients”, Math. Notes, 61:1 (1997), 105–117  mathnet  mathnet  crossref  crossref  isi
    12. A. S. Holevo, “Covariant quantum Markovian evolutions”, Journal of Mathematical Physics, 37:4 (1996), 1812  crossref
    13. A. S. Holevo, “On translation-covariant quantum Markov equations”, Izv. Math., 59:2 (1995), 427–443  mathnet  crossref  mathscinet  zmath  isi
    14. A. S. Holevo, “Excessive maps, “arrival times” and perturbation of dynamical semigroups”, Izv. Math., 59:6 (1995), 1311–1325  mathnet  crossref  mathscinet  zmath  isi
    15. A. M. Chebotarev, “On the maximal $C^*$-algebra of zeros of completely positive mapping and on the boundary of a dynamic semigroup”, Math. Notes, 56:6 (1994), 1271–1282  mathnet  crossref  mathscinet  zmath  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:524
    Full-text PDF :253
    References:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025