Abstract:
Dynamical semigroups constitute a quantum-mechanical generalization of Markov semigroups, a concept familiar from the theory of stochastic processes. Let H be a Hilbert space and A a von Neumann algebra. A dynamical semigroup Pt is a σ-weakly continuous one-parameter semigroup of completely positive maps of A into itself. A semigroup Pt possessing the property of preserving the identity I∈A is said to be conservative and its infinitesimal operator L[⋅] is said to be regular. The present paper studies necessary and sufficient conditions for strongly continuous dynamical semigroups to be conservative. It is shown that under certain additional assumptions one can formulate necessary and sufficient conditions which are analogous to Feller's condition for regularity of a diffusion process: the equation P=L[P] has no solutions in A+. Using a Jensen-type inequality for completely positive maps, constructive sufficient conditions are obtained for conservativeness, in the form of inequalities for commutators. The restriction of a dynamical subgroup to an Abelian subalgebra of L∞(Rn) yields a series of new regularity conditions for both diffusion and jump processes.
Citation:
A. M. Chebotarev, “Necessary and sufficient conditions for the conservativity of dynamical semigroups”, Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat. Nov. Dostizh., 36, VINITI, Moscow, 1989, 149–184; J. Soviet Math., 56:5 (1991), 2697–2719
\Bibitem{Che89}
\by A.~M.~Chebotarev
\paper Necessary and sufficient conditions for the conservativity of dynamical semigroups
\serial Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat. Nov. Dostizh.
\yr 1989
\vol 36
\pages 149--184
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/intd123}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1057199}
\zmath{https://zbmath.org/?q=an:0734.60079|0727.60083}
\transl
\jour J. Soviet Math.
\yr 1991
\vol 56
\issue 5
\pages 2697--2719
\crossref{https://doi.org/10.1007/BF01095977}
Linking options:
https://www.mathnet.ru/eng/intd123
https://www.mathnet.ru/eng/intd/v36/p149
This publication is cited in the following 15 articles:
Jinshu Chen, Jie Hao, Mei Guo, “Quantum Bernoulli noises approach to quantum master equations and applications to Ehrenfest-type theorems”, Int. J. Quantum Inform., 23:01 (2025)
G. G. Amosov, E. L. Baitenov, A. N. Pechen, “On reconstruction of states from evolution induced by quantum dynamical semigroups perturbed by covariant measures”, Quantum Inf. Process., 22 (2023), 401–14
Franco Fagnola, Carlos M. Mora, “Basic Properties of a Mean Field Laser Equation”, Open Syst. Inf. Dyn., 26:03 (2019), 1950015
I. Siemon, A. S. Holevo, R. F. Werner, “Unbounded generators of dynamical semigroups”, Open Syst. Inf. Dyn., 24:4 (2017), 1740015–24
Alexander M. Chebotarev, Julio C. Garcia, Roberto B. Quezada, Stochastic Analysis and Mathematical Physics II, 2003, 9
A. M. Chebotarev, S. Yu. Shustikov, “Conditions Sufficient for the Conservativity of a Minimal Quantum Dynamical Semigroup”, Math. Notes, 71:5 (2002), 692–710
S. Yu. Shustikov, “Regularity criterion for a mathematical model of the laser”, Math. Notes, 67:5 (2000), 665–671
V. P. Belavkin, Lecture Notes in Physics, 504-504, Irreversibility and Causality Semigroups and Rigged Hilbert Spaces, 1998, 82
A. S. Holevo, Lecture Notes in Physics, 504-504, Irreversibility and Causality Semigroups and Rigged Hilbert Spaces, 1998, 67
A. M. Chebotarev, “The quantum stochastic equation is unitarily equivalent to a symmetric boundary value problem for the Schrödinger equation”, Math. Notes, 61:4 (1997), 510–518
A. M. Chebotarev, J. C. Garcia, R. B. Quezada, “On the Lindblad equation with unbounded time-dependent coefficients”, Math. Notes, 61:1 (1997), 105–117
A. S. Holevo, “Covariant quantum Markovian evolutions”, Journal of Mathematical Physics, 37:4 (1996), 1812
A. S. Holevo, “On translation-covariant quantum Markov equations”, Izv. Math., 59:2 (1995), 427–443
A. S. Holevo, “Excessive maps, “arrival times” and perturbation of dynamical semigroups”, Izv. Math., 59:6 (1995), 1311–1325
A. M. Chebotarev, “On the maximal $C^*$-algebra of zeros of completely positive mapping and on the boundary of a dynamic semigroup”, Math. Notes, 56:6 (1994), 1271–1282