Itogi Nauki i Tekhniki. Seriya "Sovremennye Problemy Matematiki. Noveishie Dostizheniya"
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat. Nov. Dostizh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Seriya "Sovremennye Problemy Matematiki. Noveishie Dostizheniya", 1989, Volume 36, Pages 69–102 (Mi intd121)  

This article is cited in 70 scientific papers (total in 70 papers)

Markov invariant geometry on state manifolds

E. A. Morozova, N. N. Chentsov
Abstract: This paper is devoted to certain differential-geometric constructions in classical and noncommutative statistics, invariant with respect to the category of Markov maps, which have recently been developed by Soviet, Japanese, and Danish researchers. Among the topics considered are invariant metrics and invariant characteristics of informational proximity, and lower bounds are found for the uniform topologies that they generate on sets of states. A description is given of all invariant Riemannian metrics on manifolds of sectorial states. The equations of the geodesies for the entire family of invariant linear connections $\Delta={}^\gamma\Delta$, $\gamma\in\mathbb R$, are integrated on sets of classical probability distributions. A description is given of the protective structure of all the geodesic curves and totally geodesic submanifolds, which turns out to be a local lattice structure; it is shown to coincide, up to a factor $\gamma(\gamma-1)$, with the Riemann–Christoffel curvature tensor.
English version:
Journal of Soviet Mathematics, 1991, Volume 56, Issue 5, Pages 2648–2669
DOI: https://doi.org/10.1007/BF01095975
Bibliographic databases:
UDC: 519.248:53
Language: Russian
Citation: E. A. Morozova, N. N. Chentsov, “Markov invariant geometry on state manifolds”, Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat. Nov. Dostizh., 36, VINITI, Moscow, 1989, 69–102; J. Soviet Math., 56:5 (1991), 2648–2669
Citation in format AMSBIB
\Bibitem{MorChe89}
\by E.~A.~Morozova, N.~N.~Chentsov
\paper Markov invariant geometry on state manifolds
\serial Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat. Nov. Dostizh.
\yr 1989
\vol 36
\pages 69--102
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/intd121}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1057197}
\zmath{https://zbmath.org/?q=an:0734.60004|0727.60006}
\transl
\jour J. Soviet Math.
\yr 1991
\vol 56
\issue 5
\pages 2648--2669
\crossref{https://doi.org/10.1007/BF01095975}
Linking options:
  • https://www.mathnet.ru/eng/intd121
  • https://www.mathnet.ru/eng/intd/v36/p69
  • This publication is cited in the following 70 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:764
    Full-text PDF :348
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024