Abstract:
This paper is devoted to certain differential-geometric constructions in classical and noncommutative statistics, invariant with respect to the category of Markov maps, which have recently been developed by Soviet, Japanese, and Danish researchers. Among the topics considered are invariant metrics and invariant characteristics of informational proximity, and lower bounds are found for the uniform topologies that they generate on sets of states. A description is given of all invariant Riemannian metrics on manifolds of sectorial states. The equations of the geodesies for the entire family of invariant linear connections Δ=γΔΔ=γΔ, γ∈R, are integrated on sets of classical probability distributions. A description is given of the protective structure of all the geodesic curves and totally geodesic submanifolds, which turns out to be a local lattice structure; it is shown to coincide, up to a factor γ(γ−1), with the Riemann–Christoffel curvature tensor.
Citation:
E. A. Morozova, N. N. Chentsov, “Markov invariant geometry on state manifolds”, Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat. Nov. Dostizh., 36, VINITI, Moscow, 1989, 69–102; J. Soviet Math., 56:5 (1991), 2648–2669
\Bibitem{MorChe89}
\by E.~A.~Morozova, N.~N.~Chentsov
\paper Markov invariant geometry on state manifolds
\serial Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat. Nov. Dostizh.
\yr 1989
\vol 36
\pages 69--102
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/intd121}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1057197}
\zmath{https://zbmath.org/?q=an:0734.60004|0727.60006}
\transl
\jour J. Soviet Math.
\yr 1991
\vol 56
\issue 5
\pages 2648--2669
\crossref{https://doi.org/10.1007/BF01095975}
Linking options:
https://www.mathnet.ru/eng/intd121
https://www.mathnet.ru/eng/intd/v36/p69
This publication is cited in the following 71 articles:
Laetitia P. Bettmann, John Goold, “Information geometry approach to quantum stochastic thermodynamics”, Phys. Rev. E, 111:1 (2025)
Tan Van Vu, Keiji Saito, “Geometric characterization for cyclic heat engines far from equilibrium”, Phys. Rev. A, 109:4 (2024)
Shunlong Luo, Yuan Sun, “Gram matrices of quantum channels via quantum Fisher information with applications to decoherence and uncertainty”, Info. Geo., 7:S1 (2024), 355
Hiroshi Matsuzoe, “Half a century of information geometry, part 1”, Info. Geo., 7:S1 (2024), 3
Haonan Zhang, “Some Convexity and Monotonicity Results of Trace Functionals”, Ann. Henri Poincaré, 25:4 (2024), 2087
Diego Paiva Pires, Eduardo R. deAzevedo, Diogo O. Soares-Pinto, Frederico Brito, Jefferson G. Filgueiras, “Experimental investigation of geometric quantum speed limits in an open quantum system”, Commun Phys, 7:1 (2024)
F. M. Ciaglia, F. Di Cosmo, F. Di Nocera, P. Vitale, “Monotone metric tensors in quantum information geometry”, Int. J. Geom. Methods Mod. Phys., 21:10 (2024)
F. M. Ciaglia, F. Di Cosmo, L. González-Bravo, Lecture Notes in Computer Science, 14072, Geometric Science of Information, 2023, 363
F. M. Ciaglia, F. Di Cosmo, L. González-Bravo, A. Ibort, G. Marmo, “The categorical foundations of quantum information theory: Categories and the Cramer–Rao inequality”, Mod. Phys. Lett. A, 38:16n17 (2023)
Guilherme Fiusa, Diogo O. Soares-Pinto, Diego Paiva Pires, “Fidelity-based distance bounds for
N
-qubit approximate quantum error correction”, Phys. Rev. A, 107:3 (2023)
Paul M. Alsing, Carlo Cafaro, Orlando Luongo, Cosmo Lupo, Stefano Mancini, Hernando Quevedo, “Comparing metrics for mixed quantum states: Sjöqvist and Bures”, Phys. Rev. A, 107:5 (2023)
Daigo Kudo, Hiroyasu Tajima, “Fisher information matrix as a resource measure in the resource theory of asymmetry with general connected-Lie-group symmetry”, Phys. Rev. A, 107:6 (2023)
R Bistroń, M Eckstein, K Życzkowski, “Monotonicity of a quantum 2-Wasserstein distance”, J. Phys. A: Math. Theor., 56:9 (2023), 095301
Jan de Boer, Victor Godet, Jani Kastikainen, Esko Keski-Vakkuri, “Quantum information geometry of driven CFTs”, J. High Energ. Phys., 2023:9 (2023)
Fabio Di Nocera, MaxEnt 2022, 2022, 34
Bálint Koczor, Simon C. Benjamin, “Quantum natural gradient generalized to noisy and nonunitary circuits”, Phys. Rev. A, 106:6 (2022)
Noemie Combe, Philippe Combe, Hanna Nencka, Lecture Notes in Networks and Systems, 438, Advances in Information and Communication, 2022, 356
Yuan Sun, Nan Li, Shunlong Luo, “Quantifying coherence relative to channels via metric-adjusted skew information”, Phys. Rev. A, 106:1 (2022)