Itogi Nauki i Tekhniki. Seriya "Sovremennye Problemy Matematiki. Noveishie Dostizheniya"
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat. Nov. Dostizh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Seriya "Sovremennye Problemy Matematiki. Noveishie Dostizheniya", 1988, Volume 33, Pages 3–29 (Mi intd105)  

This article is cited in 8 scientific papers (total in 8 papers)

Stable cohomology of complements to the discriminants of deformations of singularities of smooth functions

V. A. Vassiliev
Abstract: Complements to discriminants of singularities of smooth functions are far generalizations of the classifying spaces of Artin and Brieskorn braid groups. A group of stable cohomologies (i.e., cohomologies preserved under adjacency of singularities) is described for these spaces. A relationship between these cohomologies and Gauss–Manin connectivity of singularities is indicated. A cellular realization of cohomologies of symmetric groups with coefficients in $Z_2$ is described.
English version:
Journal of Soviet Mathematics, 1990, Volume 52, Issue 4, Pages 3217–3230
DOI: https://doi.org/10.1007/BF01095248
Bibliographic databases:
Document Type: Article
UDC: 515.164.15+515.172.23
Language: Russian
Citation: V. A. Vassiliev, “Stable cohomology of complements to the discriminants of deformations of singularities of smooth functions”, Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat. Nov. Dostizh., 33, VINITI, Moscow, 1988, 3–29; J. Soviet Math., 52:4 (1990), 3217–3230
Citation in format AMSBIB
\Bibitem{Vas88}
\by V.~A.~Vassiliev
\paper Stable cohomology of complements to the discriminants of deformations of singularities of smooth functions
\serial Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat. Nov. Dostizh.
\yr 1988
\vol 33
\pages 3--29
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/intd105}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=967763}
\zmath{https://zbmath.org/?q=an:0731.55012|0900.55005}
\transl
\jour J. Soviet Math.
\yr 1990
\vol 52
\issue 4
\pages 3217--3230
\crossref{https://doi.org/10.1007/BF01095248}
Linking options:
  • https://www.mathnet.ru/eng/intd105
  • https://www.mathnet.ru/eng/intd/v33/p3
  • This publication is cited in the following 8 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:544
    Full-text PDF :188
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024