Itogi Nauki i Tekhniki. Seriya "Sovremennye Problemy Matematiki. Noveishie Dostizheniya"
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat. Nov. Dostizh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Itogi Nauki i Tekhniki. Seriya "Sovremennye Problemy Matematiki. Noveishie Dostizheniya", 1988, Volume 32, Pages 125–211 (Mi intd104)  

This article is cited in 20 scientific papers (total in 20 papers)

Deformations of complex superspaces and of the coherent sheaves on them

A. Yu. Vaintrob
Abstract: This paper sets forth the basic elements of the theory of complex superspaces, coherent sheaves on them and deformations of these objects. The existence of versal deformations is proved for various objects of superanalytical geometry — superspaces, sheaves on them, subsuperspaces, SUSY-curves and so on. A construction is described of families of supermanifolds that contain all supermanifolds with a given underlying or associated split manifold.
English version:
Journal of Soviet Mathematics, 1990, Volume 51, Issue 1, Pages 2140–2188
DOI: https://doi.org/10.1007/BF01098187
Bibliographic databases:
UDC: 512.743
Language: Russian
Citation: A. Yu. Vaintrob, “Deformations of complex superspaces and of the coherent sheaves on them”, Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat. Nov. Dostizh., 32, VINITI, Moscow, 1988, 125–211; J. Soviet Math., 51:1 (1990), 2140–2188
Citation in format AMSBIB
\Bibitem{Vai88}
\by A.~Yu.~Vaintrob
\paper Deformations of complex superspaces and of the coherent sheaves on them
\serial Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat. Nov. Dostizh.
\yr 1988
\vol 32
\pages 125--211
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/intd104}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=957753}
\zmath{https://zbmath.org/?q=an:0736.58003}
\transl
\jour J. Soviet Math.
\yr 1990
\vol 51
\issue 1
\pages 2140--2188
\crossref{https://doi.org/10.1007/BF01098187}
Linking options:
  • https://www.mathnet.ru/eng/intd104
  • https://www.mathnet.ru/eng/intd/v32/p125
  • This publication is cited in the following 20 articles:
    1. Nadia Ott, “Artin's theorems in supergeometry”, Journal of Geometry and Physics, 194 (2023), 105021  crossref
    2. Nadia Ott, Alexander A. Voronov, “The supermoduli space of genus zero super Riemann surfaces with Ramond punctures”, Journal of Geometry and Physics, 185 (2023), 104726  crossref
    3. E. G. VISHNYAKOVA, “RIGIDITY OF FLAG SUPERMANIFOLDS”, Transformation Groups, 27:3 (2022), 1149  crossref
    4. Ugo Bruzzo, Daniel Hernández Ruipérez, “The supermoduli of SUSY curves with Ramond punctures”, RACSAM, 115:3 (2021)  crossref
    5. Kowshik Bettadapura, “On the problem of splitting deformations of super Riemann surfaces”, Lett Math Phys, 109:2 (2019), 381  crossref
    6. Kowshik Bettadapura, “Obstructed thickenings and supermanifolds”, Journal of Geometry and Physics, 139 (2019), 25  crossref
    7. Sergio Luigi Cacciatori, Simone Noja, “Projective superspaces in practice”, Journal of Geometry and Physics, 130 (2018), 40  crossref
    8. Giulio Codogni, Springer INdAM Series, 19, Perspectives in Lie Theory, 2017, 347  crossref
    9. R. Heluani, J. Van Ekeren, “Characters of topological N= 2 vertex algebras are Jacobi forms on the moduli space of elliptic supercurves”, Advances in Mathematics, 302 (2016), 551  crossref
    10. Anton M. Zeitlin, “Superopers on Supercurves”, Lett Math Phys, 105:2 (2015), 149  crossref
    11. Rita Fioresi, Stephen Diwen Kwok, Springer INdAM Series, 7, Advances in Lie Superalgebras, 2014, 101  crossref
    12. S. Bouarroudj, P. Ya. Grozman, D. A. Leites, I. M. Shchepochkina, “Minkowski superspaces and superstrings as almost real–complex supermanifolds”, Theoret. and Math. Phys., 173:3 (2012), 1687–1708  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib  elib
    13. Jeffrey M. Rabin, Lecture Notes in Mathematics, 2027, Supersymmetry in Mathematics and Physics, 2011, 241  crossref
    14. Reimundo Heluani, “SUSY Vertex Algebras and Supercurves”, Commun. Math. Phys., 275:3 (2007), 607  crossref
    15. Gregorio Falqui, Cesare Reina, Alessandro Zampa, “A note on the super Krichever map”, Journal of Geometry and Physics, 37:1-2 (2001), 169  crossref
    16. M. J. Bergvelt, J. M. Rabin, “Supercurves, their Jacobians, and super KP equations”, Duke Math. J., 98:1 (1999)  crossref
    17. J.A. Domínguez Pérez, D. Hernández Ruipérez, C. Sancho de Salas, “Global structures for the moduli of (punctured) super riemann surfaces”, Journal of Geometry and Physics, 21:3 (1997), 199  crossref
    18. Arkady Vaintrob, “Conformal Lie superalgebras and moduli spaces”, Journal of Geometry and Physics, 15:2 (1995), 109  crossref
    19. V.A. Bunegina, A.L. Onishchik, “Two families of flag supermanifolds”, Differential Geometry and its Applications, 4:4 (1994), 329  crossref
    20. U. Bruzzo, J.A. Domínguez Pérez, “Line bundles over families of (super) Riemann surfaces. II: The graded case”, Journal of Geometry and Physics, 10:3 (1993), 269  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:493
    Full-text PDF :213
    References:1
     
      Contact us:
    math-net2025_05@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025