Citation:
V. T. Markov, A. V. Mikhalev, L. A. Skornyakov, A. A. Tuganbaev, “Rings of endomorphisms of modules and lattices of submodules”, Itogi Nauki i Tekhniki. Ser. Algebra. Topol. Geom., 21, VINITI, Moscow, 1983, 183–254; J. Soviet Math., 31:3 (1985), 3005–3051
\Bibitem{MarMikSko83}
\by V.~T.~Markov, A.~V.~Mikhalev, L.~A.~Skornyakov, A.~A.~Tuganbaev
\paper Rings of endomorphisms of modules and lattices of submodules
\serial Itogi Nauki i Tekhniki. Ser. Algebra. Topol. Geom.
\yr 1983
\vol 21
\pages 183--254
\publ VINITI
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/inta105}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=724617}
\zmath{https://zbmath.org/?q=an:0574.16019}
\transl
\jour J. Soviet Math.
\yr 1985
\vol 31
\issue 3
\pages 3005--3051
\crossref{https://doi.org/10.1007/BF02106808}
Linking options:
https://www.mathnet.ru/eng/inta105
https://www.mathnet.ru/eng/inta/v21/p183
This publication is cited in the following 13 articles:
V. A. Molchanov, R. A. Farakhutdinov, “Relatively elementary definability of the class of universal partial graphic semiautomata in the class of semigroups”, jour, 2:4 (2025), 103
E. V. Khvorostukhina, V. A. Molchanov, “Abstract Characterization of Input Symbol Semigroups of Universal Hypergraphic Automata”, Lobachevskii J Math, 41:2 (2020), 214
P. A. Krylov, A. A. Tuganbaev, “Moduli nad oblastyami diskretnogo normirovaniya. III”, Algebra, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 164, VINITI RAN, M., 2019, 74–95
V. A. Molchanov, “Elementary definability of the class of universal planar automata in the class of semigroups”, Siberian Math. J., 60:6 (2019), 1089–1098
P. A. Krylov, “Radikaly kolets endomorfizmov abelevykh grupp”, Vestn. Tomsk. gos. un-ta. Matem. i mekh., 2007, no. 1, 17–27
P. A. Krylov, “The Jacobson Radical of an Endomorphism Ring for an Abelian Group”, Algebra and Logic, 43:1 (2004), 34–43
P. A. Krylov, E. G. Pakhomova, “Abelian Groups and Regular Modules”, Math. Notes, 69:3 (2001), 364–372
M. V. Eremina, P. A. Krylov, “The tensor product of abelian groups as a Noetherian module over an endomorphism ring”, Russian Math. (Iz. VUZ), 45:4 (2001), 14–21
M. Hazewinkel, Encyclopaedia of Mathematics, 1994, 41
M. Hazewinkel, Encyclopaedia of Mathematics, 1989, 337
P. A. Krylov, “A class of abelian groups with hereditary endomorphism rings”, Siberian Math. J., 28:6 (1987), 912–916
K. I. Beidar, V. N. Latyshev, V. T. Markov, A. V. Mikhalev, L. A. Skornyakov, A. A. Tuganbaev, “Associative rings”, J. Soviet Math., 38:3 (1987), 1855–1929