Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya, Forthcoming paper (Mi im9587)  

On the period of the continued fraction expansion for $\sqrt{d}$

M. A. Korolev

Steklov Mathematical Institute of Russian Academy of Sciences, Moscow
Abstract: If $d$ is not a perfect square, we define $T(d)$ as the length of the minimal period of the simple continued fraction expansion for $\sqrt{d}$. Otherwise, we put $T(d) = 0$. In the recent paper (2024), F.Battistoni, L.Grenié and G.Molteni established (in particular) an upper bound for the second moment of $T(d)$ over the segment $x<d\leqslant 2x$. as a corollary, they derived a new upper estimate for the number of $d$ such that $t(d)>\alpha\sqrt{x}$. In this paper, we improve slightly this result of three authors.
Keywords: continued fractions, period of continued fraction expansion, trilinear Kloosterman sums
Received: 15.03.2024
Revised: 19.06.2024
UDC: 511.32, 511.35, 511.41
MSC: 11A55, 11L05, 11Y65
Language: Russian
Linking options:
  • https://www.mathnet.ru/eng/im9587
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:48
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024