Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya, Forthcoming paper (Mi im9581)  

Toric geometry and the standard conjecture for a compactification of the Neron model of Abelian variety over 1-dimensional function field

S. G. Tankeev

Vladimir State University
Abstract: It is proved that if $\mathcal M\to C$ is the Néron minimal model of a principally polarized $(d-1)$-dimensional Abelian variety $\mathcal M_\eta$ over the field $\kappa(\eta)$ of rational functions of a smooth projective curve $C$, $\End_{\overline{\kappa(\eta)}} (\mathcal M_\eta\otimes_{\kappa(\eta)}\overline{\kappa(\eta)})=\Z$, the complexification of the Lie algebra of the Hodge group $\Hg(M_\eta\otimes_{\kappa(\eta)}\C)$ is a simple Lie algebra of type $C_{d-1}$, all bad reductions of the Abelian variety $\mathcal M_\eta$ are semi-stable, for any places $\delta,\delta'$ of bad reductions the $\Q$-space of Hodge cycles on the product $\Alb(\overline{\mathcal M_\delta^0})\,\times \, \Alb(\overline{\mathcal M_{\delta'}^0})$ of Albanese varieties is generated by classes of algebraic cycles, then there exists a finite ramified covering $\widetilde{C}\to C$ such that for any Künnemann compactification $\widetilde{X}$ of the Néron minimal model of the Abelian variety $\mathcal M_\eta\otimes_{\kappa(\eta)}\kappa(\widetilde{\eta})$ the Grothendieck standard conjecture $B(\widetilde{X})$ of Lefschetz type is true.
Keywords: toric geometry, Grothendieck standard conjecture of Lefschetz type, Abelian variety,, Kunnemann compactification of Neron model, Hodge conjecture
Received: 15.02.2024
Document Type: Article
UDC: 512.7
Language: Russian
Linking options:
  • https://www.mathnet.ru/eng/im9581
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024