Abstract:
Order estimates for the Kolmogorov widths of an intersection of Sobolev classes
on a $d$-dimensional John domain and on the 1-dimensional torus are obtained.
In particular, one Galeev's result is generalized.
Keywords:Kolmogorov width, intersection of Sobolev classes.
Galeev [1]–[3] studied the problem of the Kolmogorov widths of an intersection of periodic Sobolev and Nikol’skii classes in $L_q$-spaces. For $q\leqslant 2$, and in the case of “great smoothness” for $q>2$, the problem was reduced to estimating the Kolmogorov $n$-widths of an intersection of $l_{p_j}^{2n}$- balls with different radii (see the notation in § 2); the last problem was solved in [1]. No estimates of the widths were given for $q>2$ in the case of “small smoothness”.
Recently in [4], estimates for the Kolmogorov $n$-widths of an intersection of $N$-dimensional balls for $N\geqslant 2n$ were obtained. This allows us to obtain estimates for the widths of an intersection of different function classes. In the present paper, order estimates for the Kolmogorov widths of an intersection of a finite family of Sobolev classes on a John domain (see the definition below) will be obtained; the Sobolev class $W^r_p(\Omega)$ will be defined by restrictions on all partial derivatives of order $r$ (in contrast to the papers [1]–[3], where the smoothness of functions on a multi-dimensional torus was defined by means of one mixed derivative $\partial^{r_1+\dots+r_d}/\partial x_1^{r_1}\cdots \partial x_d^{r_d}$). In addition, we generalize Theorem 1 from [2] on widths of an intersection of Sobolev classes on the one-dimensional torus to the case of “small smoothness”; an answer for “great smoothness” and for the case $q\leqslant 2$ will also be given, but in different terms.
In [5], [6] a problem of widths of an intersection of two weighted Sobolev classes (of zeroth and $r$th smoothness) on a John domain was studied. The orders of the widths were found in an explicit form via consideration of a fairly great number of cases. Here, we generalize this result, but the order will be given in terms of the minimum point of some special piecewise-affine function on a polyhedral set.
Recall the necessary definitions.
Let $X$ be a normed space, and let $C\subset X$, $n\in \mathbb{Z}_+$. The Kolmogorov width of $C$ in the space $X$ is defined by
where $\mathcal{L}_n(X)$ is the family of all linear subspaces in $X$ of dimension at most $n$. For more information about widths, see [7]–[9].
Let $\Omega \subset \mathbb{R}^d$ be a bounded domain, and let $1\leqslant p\leqslant \infty$, $r\in \mathbb{Z}_+$. For $f\in L_1^{\mathrm{loc}}(\Omega)$ we denote by $\nabla^r f$ the vector of all generalized partial derivatives of order $r$. If all its components belong to the space $L_p(\Omega)$, then $f$ lies in the Sobolev space $\mathcal{W}^r_p(\Omega)$. The Sobolev class is defined by
where $\|\nabla^r f\|_{L_p(\Omega)}$ is the $L_p$-norm of the function $|\nabla^r f(\,{\cdot}\,)|$.
If $\Omega$ has Lipschitz boundary, then $\mathcal{W}^r_p(\Omega)$ is compactly embedded into $L_q(\Omega)$ if and only if $r/d+1/q-1/p>0$ (see [10]). If $\Omega$ is a John domain, the embedding condition is the same [11], [12]. Let us give the definition of such domains.
We denote by $B_a(x)$ the Euclidean ball of radius $a$ with centre at a point $x$.
Definition 1. Let $\Omega\subset\mathbb{R}^d$ be a bounded domain, and let $a>0$. We say that $\Omega \in \mathbf{FC}(a)$ if there is a point $x_*=x_*(\Omega)\in \Omega$ such that, for each $x\in \Omega$, there is a number $T(x)>0$ and a curve $\gamma_x\colon [0, T(x)] \to\Omega$ with the following properties:
1) $\gamma_x$ has the natural parametrization with respect to the Euclidean norm on $\mathbb{R}^d$;
2) $\gamma_x(0)=x$, $\gamma_x(T(x))=x_*$;
3) $B_{at}(\gamma_x(t))\subset \Omega$ for all $t\in [0, T(x)]$.
We say that $\Omega$ is a John domain if $\Omega\in \mathbf{FC}(a)$ for some $a>0$.
Any domain with Lipschitz boundary is a John domain. The Koch snowflake is another example. For $\sigma >1$, the set
Let us introduce the notation for order equalities and inequalities. Let $X$, $Y$ be sets, and let $f_1,f_2\colon X\times Y\to \mathbb{R}_+$. We write $f_1(x, y)\underset{y}{\lesssim} f_2(x, y)$ (or $f_2(x, y)\underset{y}{\gtrsim} f_1(x, y)$) if, for each $y\in Y$, there exists $c(y)>0$ such that $f_1(x, y)\leqslant c(y)f_2(x, y)$ for all $x\in X$; $f_1(x,y)\underset{y}{\asymp} f_2(x, y)$ means that $f_1(x, y) \underset{y}{\lesssim} f_2(x, y)$ and $f_2(x,y)\underset{y}{\lesssim} f_1(x, y)$.
We set
$$
\begin{equation*}
\mathfrak{Z} = \{r_1, \dots, r_s, p_1, \dots, p_s, q, d, a, R\},
\end{equation*}
\notag
$$
where $R=\operatorname{diam} \Omega$.
Theorem 1. Let $\Omega \subset \mathbb{R}^d$, $\Omega \in \mathbf{FC}(a)$, $s\geqslant 2$, $1\leqslant q<\infty$, $r_j\in \mathbb{Z}_+$, $1<p_j\leqslant \infty$, $1\leqslant j\leqslant s$, and let (1) and (3) hold. We also suppose that $r_1/d+1/q-1/p_1>0$.
1. If $p_i\geqslant q$ for all $i\in \{1, \dots, s\}$, then
In addition, we will show that if $r_1/d+1/q-1/p_1\leqslant 0$, then $d_n(M, L_q(\Omega)) \underset{\mathfrak{Z}}{\gtrsim} 1$.
In the end of § 3 we will explain how to find a point $t_*$ from assertion 5 of Theorem 1. In addition, there are two particular cases, in which an explicit expression for $h(t_*)$ can be given.
Theorem 2. Under the conditions of Theorem 1, let $q > 2$, $\{1, \dots, s\} = I\cup K$, where the sets $I$ and $K$ are defined by (7), (9), let $I\ne \{1, \dots, s\}$, $K\ne \{1, \dots, s\}$, and let $ (i_0, j_0), $ $(i_1, j_1)$ be defined by (12) and (13), respectively.
1. If $(1-\widetilde \lambda_{i_1j_1})r_{j_1}/d + \widetilde \lambda_{i_1j_1} r_{i_1}/d - 1/2 >0$, then
let the functions $\varphi_j$ be defined by (17), and let $h(t) = \max_{1\leqslant j\leqslant s} \varphi_j(t)$. Suppose that the function $h$ has a unique minimum point $t_*$ on $[1, q/2]$. Then
In § 3, we show how the general case (when condition (3) may fail) is reduced to consideration of the intersection of a subfamily of the Sobolev classes which satisfies (3).
In § 4, order estimates for the Kolmogorov widths of an intersection of one-dimensional periodic Sobolev classes are obtained. We introduce the necessary notation.
Let $\mathbb{T}=[0, 2\pi]$, and let $\mathcal{S}'(\mathbb{T})$ be the space of distributions on $\mathbb{T}$. Let $x= \sum_{k\in \mathbb{Z} \setminus \{0\}} x_k e^{ikt}$ (the series converges in the space $\mathcal{S}'(\mathbb{T})$), $r\in \mathbb{R}$. The Weyl derivative of order $r$ of the function $x$ is defined by
the Sobolev class $\widetilde W^r_p(\mathbb{T})$ is the set of functions $x\in \widetilde{\mathcal{W}}^r_p(\mathbb{T})$ such that $\|x^{(r)}\|_{L_p(\mathbb{T})}\leqslant 1$.
Let $r_j\in \mathbb{R}$, $1<p_j<\infty$, $1\leqslant j\leqslant s$, and let $r_1<\dots<r_s$. We set
Let $1<q<\infty$. Galeev [13] obtained necessary and sufficient condition for set $\widetilde M$ to lie the space $L_q(\mathbb{T})$; in [2], the problem of estimating the widths $d_n(\widetilde M, L_q(\mathbb{T}))$ was studied. Order estimates were obtained, except for the case of “small smoothness” and $q>2$. Here, we obtain order estimates for all parameters, except some “limiting” cases.
Let $\mathfrak{Z} = (r_1, \dots, r_s, p_1, \dots, p_s, q)$, and let the sets $I$, $J$, $K$, the numbers $\lambda_{ij}$, the indices $i_0$, $j_0$, and the function $h$ be as in Theorem 1.
Theorem 4. Let $1<q<\infty$, $1<p_j<\infty$, $r_j\in \mathbb{R}$, $1\leqslant j\leqslant s$, $r_1<\dots<r_s$, $r_s-1/p_s<\dots< r_1-1/p_1$. Suppose that
– if $p_1\leqslant q$, then $r_1+1/q-1/p_1>0$;
– if $p_s\geqslant q$, then $r_s>0$;
– if $p_1>q$, $p_s<q$, then $(1-\lambda_{i_0j_0})r_{j_0} + \lambda_{i_0j_0} r_{i_0}>0$.
If $q>2$, $\{1,\dots,s\}=K$, we suppose that $r_1\ne 1/p_1$; if $q>2$, $\{1,\dots,s\}\ne K$, $\{1,\dots,s\}\ne I$, we suppose that the function $h$ has a unique minimum point on $[1, q/2]$. Then
where $\beta$ is defined as in Theorem 1 for $d=1$.
In the general case, when the condition $r_s-1/p_s<\dots< r_1-1/p_1$ may fail as in § 3, the problem can be reduced to the study of the intersection of a smaller number of Sobolev classes, for which this condition is satisfied.
In § 5, we formulate a generalization of Theorem 1 to the weighted case. The proof of this result is a generalization of the arguments from § 2 of this paper and from [6].
The widths $d_n(B_p^N, l_q^N)$ were estimated by Pietsch, Stesin, Kashin, Gluskin and Garnaev [14]–[19]. Let us formulate the results on width estimation for the cases that will be considered below.
Theorem A (see [18]). Let $1\leqslant p\leqslant q<\infty$, $0\leqslant n\leqslant N/2$.
1. Let $1\leqslant q\leqslant 2$. Then $d_n(B_p^N, l_q^N) \asymp 1$.
Let $A$ be a non-empty set, let $1\leqslant p_\alpha \leqslant \infty$, $\nu_\alpha>0$ for each $\alpha \in A$ and $p_\alpha \ne p_\beta$ for $\alpha \ne \beta$. We set
5. Let $2<q<\infty$, $A_1' =\{\alpha \in A\colon p_\alpha\geqslant q\}$, $A_2' = \{\alpha \in A\colon 2\leqslant p_\alpha\leqslant q\}$, $A_3' = \{\alpha \in A\colon p_\alpha \leqslant 2\}$. In addition, we suppose that $A \ne A_1'$, $A \ne A_3'$. Let $K_0=\{(\nu_\alpha, 1/p_\alpha)\}_{\alpha \in A}$. Then
$$
\begin{equation}
\begin{aligned} \, &d_n(M_0, l_q^N) \underset{q}{\asymp} \Phi(n, N, q, K_0) \nonumber \\ &\qquad:= \min \{\Phi_1(n, N, q, K_0),\, \Phi_2(n, N, q, K_0),\, \Phi_3(n, N, q, K_0)\}, \end{aligned}
\end{equation}
\tag{26}
$$
where
$$
\begin{equation}
\Phi_1(n, N, q, K_0) =\inf \bigl\{\nu_\alpha \varkappa_{\alpha,\beta}^{1/q-1/p_\alpha}\colon \alpha \in A_1', \, \beta \in A_2'\cup A_3'\bigr\},
\end{equation}
\tag{27}
$$
$$
\begin{equation}
\Phi_2(n, N, q, K_0) =\inf \bigl\{ \nu_\alpha (\min \{1,\, n^{-1/2}N^{1/q}\})^{(1/p_\alpha-1/q)/(1/2-1/q)}, \, \alpha \in A_2'\bigr\},
\end{equation}
\tag{28}
$$
Proof. The upper estimate follows from the inclusions $M_0\,{\subset}\, \nu_\alpha B^N_{p_\alpha}$ ($\alpha \in A$), $M_0\subset \nu_\alpha B^N_{p_\alpha}\cap \nu_\beta B_{p_\beta}^N \subset \nu_\alpha^{\lambda_{\alpha,\beta}} \nu_\beta^{1-\lambda_{\alpha,\beta}}B_q^N$ ($p_\alpha\geqslant q$, $p_\beta\leqslant q$), $M_0\subset \nu_\alpha B^N_{p_\alpha}\cap \nu_\beta B_{p_\beta}^N \subset \nu_\alpha^{\widetilde\lambda_{\alpha,\beta}} \nu_\beta^{1-\widetilde\lambda_{\alpha,\beta}}B_2^N$ ($p_\alpha\geqslant 2$, $p_\beta\leqslant 2$); the inclusions into the balls of the spaces $l_q^N$ and $l_2^N$ follow from Hölder’s inequality or can be considered as a particular case of Theorem 2 in [1].
Let us prove the lower estimate. Since the set $A$ is finite, there is $A' \subset A$ such that $M_0 = \bigcap_{\alpha\in A'} \nu_\alpha B_{p_\alpha}^N$ and $1\leqslant \varkappa_{\alpha,\beta}\leqslant N$ for $\alpha$, $\beta\in A'$. Indeed, if $\varkappa_{\alpha,\beta}<1$ or $\varkappa_{\alpha,\beta}>N$ for some $\alpha$, $\beta \in A$, then $\nu_\alpha B_{p_\alpha}^N \subset \nu_\beta B_{p_\beta}^N$ or $\nu_\alpha B_{p_\alpha}^N \supset \nu_\beta B_{p_\beta}^N$; the greater ball can be excluded from the family. The required set $A'$ is obtained by excluding a finite number of “unnecessary” balls.
Now we apply Theorem C and (30) for $\bigcap_{\alpha\in A'} \nu_\alpha B_{p_\alpha}^N$ and note that the right-hand sides in the estimates have the same orders as $\nu_\alpha d_n(B_{p_\alpha}^N, l_q^N)$, $\nu_\alpha^{\lambda_{\alpha,\beta}}\nu_\beta^{1-\lambda_{\alpha,\beta}}$ and $\nu_\alpha^{\widetilde\lambda_{\alpha,\beta}} \nu_\beta^{1-\widetilde\lambda_{\alpha,\beta}} d_n(B_2^N, l_q^N)$ (see Theorems A and B). Hence, for $q\leqslant 2$,
Let $r\in \mathbb{N}$, $\Omega \subset \mathbb{R}^d$, $\Omega \in \mathbf{FC}(a)$. We denote by $\mathcal{P}_{r-1}(\Omega)$ the space of algebraic polynomials on $\Omega$ of degree at most $r-1$.
Let $E_1,E_2\subset \Omega$ be measurable subsets. We say that $E_1$ and $E_2$ do not overlap if $\operatorname{mes}(E_1 \cap E_2) = 0$ (here and in what follows, $\operatorname{mes}$ is the standard Lebesgue measure on $\mathbb{R}^d$).
Let $G_1, \dots, G_k$ be pairwise non-overlapping measurable subsets of $\Omega$, and let $T=\{G_j\}_{j=1}^k$. By $\mathcal{S}_T(\Omega)$ we denote the set of functions of the form $\sum_{j=1}^k P_j\cdot \chi_{G_j}$, where $P_j\in \mathcal{P}_{r-1}(\Omega)$. Given $1\leqslant p, q\leqslant \infty$, $f\in L_q(\Omega)$, we write
Lemma 1. Let $G_1, \dots, G_k$ be pairwise non-overlapping measurable subsets of $\Omega$, and let $T=\{G_j\}_{j=1}^k$, $\nu = \dim \mathcal{S}_T(\Omega)$. Then there is an isomorphism $A\colon \mathcal{S}_T(\Omega) \to \mathbb{R}^\nu$ such that, for all $1\leqslant p, q\leqslant \infty$,
The proof is similar to that of Proposition 2 in [5].
Lemma 2. Let the set $M$ be given by (2). Then there exist $c=c(\mathfrak{Z})\geqslant 1$ and a sequence of partitions $\{T_m\}_{m\in \mathbb{Z}_+}$ of the domain $\Omega$ with the following properties:
The partition $T_m$ was constructed in [21], in which properties 1) and 2) were also proved. Properties 3) and 4) were established in § 3 of [6] (where a more general weighted case is considered).
Lemma 3 (see [9], Ch. VII, § 2). For each $m\in \mathbb{Z}_+$ there exist functions $\psi_{m,j}\in M$ $(1\leqslant j\leqslant 2^m)$ with pairwise non-overlapping supports such that
Let $r_1/d+1/q-1/p_1>0$ (see the conditions of Theorem 1). Then $W^{r_1}_{p_1}(\Omega)\subset L_q(\Omega)$ by the embedding theorem [11], [12] (if $r_1\in \mathbb{N}$) or by Hölder’s inequality (if $r_1=0$). Hence $M\subset L_q(\Omega)$.
For $m\in \mathbb{Z}_+$ we define the operator $P_m\colon L_q(\Omega) \to \mathcal{S}_{T_m}(\Omega)$ by the formula
Using this together with (37), (39) we get the following result.
Lemma 4. Let $n\in \mathbb{N}$, $k_m\in \mathbb{Z}_+$, $\sum_{2^m\geqslant 2n} k_m \leqslant Cn$, where $C\in \mathbb{N}$. Then there is a number $C_1=C_1(\mathfrak{Z})\in \mathbb{N}$ such that
Proof. Let the functions $\psi_{m,j}$ be as in Lemma 3. We set $L=\operatorname{span} \{\psi_{m,j}\}_{j=1}^{2^m}$. Since the functions $\psi_{m,j}$ have non-overlapping supports, there is a linear projection $P\colon L_q(\Omega) \to L$ such that $\|P\|=1$. Let
Hence (21) holds, and for estimating the widths of the intersection of finite-dimensional balls from Lemmas 4 and 5, we can apply Theorem C.
In cases 1–3, in order to estimate from above $d_n(M, L_q(\Omega))$, we use Theorem D and the inclusions $M\subset W^{r_s}_{p_s}(\Omega)$ and $M\subset W^{r_1}_{p_1}(\Omega)$. In estimating from below, from Lemma 5 for $m =\lceil \log(2n)\rceil$ we get
Indeed, $r_i>0$ for $2\leqslant i\leqslant s$, $r_1\geqslant 0$. By the conditions of assertion 4 of Theorem 1, there exist $i$, $j$ such that $\lambda_{ij}\in (0, 1)$. This together with the definition of $(i_0, j_0)$ implies (42).
The lower estimate is obtained similarly via Lemma 5.
Consider case 5. Let $\varepsilon >0$, $m_*(n) \in [\log n, (q/2)\log n]$ (these numbers will be defined later from $\mathfrak{Z}$). Setting $k_m = \lfloor n\cdot 2^{-\varepsilon|m-m_*(n)|}\rfloor$ for $\log (2n)\leqslant m\leqslant (q/2) \log n$, $k_m =0$ for $m> (q/2) \log n$, we have $\sum_{m\geqslant \log (2n)} k_m \leqslant Cn$, where $C=C(\mathfrak{Z}, \varepsilon)$, and hence Lemma 4 applies.
Let us use (26)–(30) to estimate from above the summands in the right-hand side of (40). First, for the order estimates for the widths with $k_m=n$ for each $m\geqslant \log(2n)$, we have
and the functions $h_{0, n},h_{1,n},h_{2,n}\colon [\log n, +\infty) \to \mathbb{R}\cup \{-\infty\}$ have the following form. If $I= \varnothing$, then $h_{0,n}\equiv -\infty$; if $I\ne \varnothing$, then
(for $m\leqslant m_n$, strictly increasing geometric progressions are summed, and for $m\geqslant m_n$, strictly decreasing geometric progressions are summed).
Now we set $m_*(n) = m_n$. From (26)–(29) and the definition of $k_m$ we have
Hence it remains to prove that the function $h_*(\,{\cdot}\,, n)$ has a unique minimum point on $[\log n, +\infty)$, and to find the number $\beta_*$.
First, let $m\geqslant (q/2) \log n$. From (43)–(45), (47) we have $h_*(\,{\cdot}\,, m) = \alpha m$. We claim that $\alpha >0$. Indeed, if $p_1>q$, then $\alpha \geqslant (1-\lambda_{i_0j_0})r_{j_0}/d + \lambda_{i_0j_0} r_{i_0}/d>0$ (the positivity can be proved as in case 4). If $p_1\leqslant q$, then, by (4), we have $1\in J$, hence $\alpha \geqslant r_1/d+1/q-1/p_1>0$ by conditions of the theorem. Therefore,
By (43)–(46), we have $h_*(m, n) = \max_{1\leqslant k\leqslant l} (\alpha_k m + \beta_k \log n)$ for $\log n \leqslant m \leqslant q/2 \log n$, where $\alpha_k$, $\beta_k$, $l$ depend only on $\mathfrak{Z}$. Substituting $t = m/\log n$, we get
$$
\begin{equation*}
\min_{\log n \leqslant m \leqslant (q/2) \log n} \, \max_{1\leqslant k\leqslant l} (\alpha_k m + \beta_k \log n) = \log n \cdot \min_{1 \leqslant t \leqslant q/2}\, \max_{1\leqslant k\leqslant l} (\alpha_k t + \beta_k).
\end{equation*}
\notag
$$
Recall that the function $h$ from the statement of the theorem has a unique minimum point by the assumption. Comparing the form of the functions $h$ and $h_*(\,{\cdot}\,, n)$, we get that a minimum point for $h_*(\,{\cdot}\,, n)$ is unique and
$$
\begin{equation*}
2^{-h_*(m_n, n)} = n^{-\min_{1 \leqslant t \leqslant q/2}\, \max_{1\leqslant k\leqslant l} (\alpha_k t + \beta_k)} = n^{-\min_{1 \leqslant t \leqslant q/2} h(t)}.
\end{equation*}
\notag
$$
Therefore, $\beta_*=h(t_*)$. This proves Theorem 1.
Since $i\in I$, $k\in K$, we have $p_i\geqslant q>2 \geqslant p_k$ (see (7), (9)), hence $k > i$, $r_k > r_i$ by (1) and (4). Therefore, it is sufficient to show that $\widetilde \lambda_{ik}-\lambda_{ik} <0$. We have
Now we consider the case $(1-\widetilde \lambda_{i_1j_1})r_{j_1}/d + \widetilde \lambda_{i_1j_1} r_{i_1}/d - 1/2 <0$. We prove that if $t$ is close to $q/2$, then $h(t) = t((1-\lambda_{i_0j_0})r_{j_0}/d + \lambda_{i_0j_0} r_{i_0}/d)$. To this end, we check that
this inequality holds by (3), (4). This completes the proof of (51).
Since $((1-\lambda_{i_0j_0})r_{j_0}/d + \lambda_{i_0j_0}r_{i_0}/d)>0$, the minimum point of the function $h$ belongs to the interval $(1, q/2)$ and satisfies the equation
and the maximum is attained only at $1$. Hence, if $t$ is close to $q/2$, then $h(t) = \varphi_1(t)$.
We have the following cases to consider.
1. If $r_s/d > (1/2) (1/p_s-1/q)/(1/2-1/q)$, then $\min_{1\leqslant t\leqslant q/2} h(t) = h(1) = r_s/d$.
2. If $r_1/d < (1/2)(1/p_1-1/q)/(1/2-1/q)$, then $\min_{1\leqslant t\leqslant q/2} h(t) = h(q/2) = (q/2)(r_1/d+ 1/q -1/p_1)$.
3. Let $r_s/d < (1/2)(1/p_s-1/q)/(1/2-1/q)$, $r_1/d > (1/2)(1/p_1-1/q)/(1/2-1/q)$. We denote by $t_*$ the minimum point of the function $h$. We have $1<t_*<q/2$, and further, since the minimum point of the function $h$ is unique, there exist $i_*,j_*\in \{1, \dots, s\}$, $i_*\ne j_*$, such that $\varphi_{i_*}(t_*) = \varphi_{j_*}(t_*)=h(t_*)$. Let us find $\varphi_{i_*}(t_*)$.
Now we describe the induction step. Assume that the function $h(t)$ is already constructed on the interval $[1, t_{l-1}]$, where $l\in \mathbb{N}$, $t_{l-1}\in [1, q/2)$,
Then $h(t) = \varphi_{j_l}(t)$ in a right semi-neighbourhood of $t_{l-1}$.
If $j_l=1$, then $h(t)=\varphi_1(t)$ for $t\in [t_{l-1}, q/2]$, which completes the construction.
Let $j_l>1$. By (53), $\varphi_j(q/2)>\varphi_{j_l}(q/2)$ for $1\leqslant j<j_l$. This together with (55) yields that, for all $j\in \{1, \dots, j_l-1\}$, there is a point $t^j_l\in (t_{l-1}, q/2)$ such that $\varphi_{j_l}(t^j_l)=\varphi_j(t^j_l)$. We set
Indeed, by (53), for each $j\in \{j_{l+1}+1,\dots, j_l\}$ we have $\varphi_j(q/2)< \varphi_{j_{l+1}}(q/2)$. In addition, $\varphi_j(t_l)\leqslant \varphi_{j_{l+1}}(t_l)$ for $j\in \{j_{l+1}+1,\dots, j_l\}$ (otherwise, if $\varphi_j(t_l)> \varphi_{j_{l+1}}(t_l)$, then $t_l^j\in (t_{l-1}, t_l)$ by (55) and by the equality $\varphi_{j_{l+1}}(t_l)=\varphi_{j_l}(t_l)$, this, however, contradicts (56)). Hence $\varphi_j(t)< \varphi_{j_{l+1}}(t)$ for $j_{l+1}+1\leqslant j\leqslant j_l$, $t> t_l$. This together with (54) yields (57).
Now let us prove (58). Indeed, if $\varphi_{j_{l+1}}(t_l)< \varphi_j(t_l)$, then $t_l^j\in (t_{l-1}, t_l)$ by (55) and by the equality $\varphi_{j_{l+1}}(t_l)=\varphi_{j_l}(t_l)$; this again contradicts the definition of $t_l$ in (56). If $\varphi_{j_{l+1}}(t_l)= \varphi_j(t_l)$, we obtain a contradiction with the definition of $j_{l+1}$ in (56).
Searching the indices $i_*$, $j_*$ in assertion 3 of Theorem 3
To this end, we use the described algorithm of construction of the function $h$. We have: $t_0=1$, $j_1=s$, $\varphi'_s<0$, $\varphi'_1>0$ by conditions of assertion 3 of the theorem. Let us find a point $t_1$ and an index $j_2$. If $\varphi'_{j_2}>0$, then $t_1$ is the minimum point of the function $h$, $i_*=j_1$, $j_*=j_2$. The case $\varphi'_{j_2}=0$ is impossible, since the minimum point of the function $h$ is unique. If $\varphi'_{j_2}<0$, we find a point $t_2$ and an index $j_3$; if $\varphi'_{j_3}>0$, then $t_2$ is the minimun point of the function $h$, $i_*=j_2$, $j_*=j_3$. If $\varphi'_{j_3}<0$, then we similarly find a point $t_3$ and an index $j_4$, and so on.
Searching the minimum point of the function $h$ in Theorem 1
In the case when $J\ne \varnothing$, $J\ne \{1,\dots,s\}$, we construct the function $h_2(t)$ on the whole interval $[1, q/2]$ by the algorithm described above. Then, comparing the values of $h_2$ and $h_0$, $h_1$ at the constructed partition points and at the endpoints of the interval, we find the function $h$ explicitly, after which it is easy to find its minimum point.
§ 3. The general case
Let now condition (3) fail. In this case, $d_n(M, L_q(\Omega))$ can also be estimated by applying Lemmas 4 and 5, but we cannot use Theorem C directly.
Notice that if $j>i$, $r_j/d-1/p_j \geqslant r_i/d-1/p_i$, then
We denote $\widehat M=\bigcap_{j=1}^k W^{r_{i_j}}_{p_{i_j}}(\Omega)$. For $\widehat M$, condition (3) is met. Let the set $\widehat M$ satisfy all the conditions of Theorem 1. Then
Let $m \in \mathbb{N}$. We have $\square_m{=}\,\{k \in \mathbb{Z}\colon 2^{m-1}{\leqslant}\, |k|\,{<}\,2^m\}$, $\mathcal{T}_m {=} \operatorname{span} \{e^{ikt}\}_{k\in \square_m}$. Given $x= \sum_{k\in \mathbb{Z} \setminus \{0\}} x_k e^{ikt}$, we set
In order to prove estimates (59), (60) we will use the following well-known facts.
Theorem E. Let $1<p<\infty$. Then $\|x^{(r)}\|_{L_p(\mathbb{T})} \underset{p,r}{\asymp} 2^{mr} \|x\|_{L_p(\mathbb{T})}$ for $x\in \mathcal{T}_m$.
This theorem follows directly from Marcinkiewicz multiplier theorem (see [22], § 1.5.3, [23], Ch. III, § 15.3; and also [8], Ch. 2, § 2.3, Theorem 18, for $r \geqslant 0$).
Theorem F (see [2], Theorem B). There is an isomorphism $A\colon \mathcal{T}_m \to \mathbb{R}^{2^m}$ such that $\|x\|_{L_p(\mathbb{T})} \underset{p}{\asymp} 2^{-m/p} \|Ax\|_{l_p^{2^m}}$ for all $p\in (1, \infty)$, $x\in \mathcal{T}_m$.
Theorem G (the Littlewood–Paley theorem; see [23], Ch. III, § 15.2 [8], Ch. 2, § 2.3, Theorem 15). Let $1<q<\infty$. Then $x\in L_q(\mathbb{T})$ if and only if $Px\in L_q(\mathbb{T})$; in addition, $\|x\|_{L_q(\mathbb{T})} \underset{q}{\asymp} \|Px\|_{L_q(\mathbb{T})}$.
Let $x=\sum_{k\in \mathbb{Z}\setminus\{0\}}x_ke^{ikt}$. We set $S_nx = \sum_{1\leqslant |k|\leqslant n}x_ke^{ikt}$.
Theorem H (see [8], Ch. 2, § 2.3). Let $1<q<\infty$, $x\in L_q(\mathbb{T})$. Then $S_n \to x$ as $n\to \infty$ in the space $L_q(\mathbb{T})$.
In [13], a criterion for the set $\widetilde{M}$ to lie in $L_q(\mathbb{T})$ was obtained. Here, we formulate a sufficient condition for embedding in a particular case. From Besov’s theorem (see [23], Ch. III, § 15.6), we have the following result.
Theorem I. The following assertions hold.
1. If $1<p, q<\infty$, $r\in \mathbb{R}$, $r-(1/p-1/q)_+\geqslant 0$, then $\widetilde{W}^r_p(\mathbb{T})\subset L_q(\mathbb{T})$.
2. Let $1<p_2\leqslant q\leqslant p_1<\infty$, $r_1,r_2\in \mathbb{R}$, and let $\lambda\in [0, 1]$ be defined by the equation $1/q =(1-\lambda)/(p_2)+\lambda/p_1$. Assume that $(1-\lambda)r_2+\lambda r_1\geqslant 0$. Then $\widetilde{W}^{r_1}_{p_1}(\mathbb{T}) \cap \widetilde{W}^{r_2}_{p_2}(\mathbb{T})\subset L_q(\mathbb{T})$.
Corollary 1. Under conditions of Theorem 4, the inclusion $\widetilde{M}\subset L_q(\mathbb{T})$ holds.
Estimate (59) follows from Theorems E, F, G, H and Corollary 1. We have
Proof. Notice that $p_1\geqslant \dots\geqslant p_s$.
If $r_1+1/q-1/p_1\leqslant 0$, then we can prove (61) proceeding as for the intersection of Sobolev classes on a John domain (for $p_1\leqslant q$, as well as for $p_1\geqslant q$).
In case 2) using (60) for $2^m\geqslant 2n$ and (22), we get
It remains to consider case 3) with $r_1+1/q-1/p_1>0$. We again use estimate (60); if $q\leqslant 2$, we take $2^m\geqslant 2n$, and if $q>2$, we take $2^m\geqslant n^{q/2}$.
If $q\leqslant 2$, then by (25), (30) and by the definition of indices $i_0$, $j_0$,
Let $q>2$. We define the numbers $\widetilde \lambda_{ij}\in [0, 1]$ and the indices $i_1\in I\cup J$, $j_1\in K$ as in assertion 5 of Theorem 1. Applying (26)–(29), we get
(here, we used the definition of $i_0$, $j_0$ and the condition $r_1+1/q-1/p_1> 0$). We get a contradiction.
From (62) it follows that $\max_{j\in J}(r_j+1/q-1/p_j)\leqslant 0$.
Now we prove that $(1-\widetilde\lambda_{i_1j_1})r_{j_1} + \widetilde\lambda_{i_1j_1}r_{i_1} + 1/q - 1/2\leqslant 0$. For $i_1\in J$, this result follows from (62) and from the equality
(here we used the definition of the indices $i_0$, $j_0$ once again). Hence $\beta_0\leqslant 0$, proving the proposition.
§ 5. A generalization to a weighted case
First, we give the definition of an $h$-set.
Definition 2 (see [24]). Let $\Gamma\subset \mathbb{R}^d$ be a non-empty compact set, and let $h\colon (0, 1] \to (0,\infty)$ be a nondecreasing function. We say that $\Gamma$ is an $h$-set if there exist a constant $c_*\geqslant 1$ and a finite countably-additive measure $\mu$ on $\mathbb{R}^d$ such that $\operatorname{supp}\mu=\Gamma$ and
$1\leqslant j\leqslant s$. The space $L_{q,v}(\Omega)$ consists of the functions $f$ such that $vf\in L_q(\Omega)$; we also set $\|f\|_{L_{q,v}(\Omega)} :=\|vf\|_{L_q(\Omega)}$.
Let
$$
\begin{equation*}
M = \bigcap_{j=1}^s \widehat W^{r_j}_{p_j,g_j}(\Omega).
\end{equation*}
\notag
$$
The sets $I$, $J$, $K$ and the numbers $\lambda_{ij}$, $\widetilde \lambda_{ij}$ are defined as in Theorem 1 (for $q\leqslant 2$ as in assertion 4, and for $q>2$, as in assertion 5).
We set $\mu_j=\beta_j+\lambda-r_j-d/q+d/p_j$, $1\leqslant j\leqslant s$;
$$
\begin{equation*}
\mathfrak{Z}_0=(d, r_1, \dots, r_s, q, p_1, \dots, p_s, a, c_*, \beta_1, \dots, \beta_s, \lambda, R),
\end{equation*}
\notag
$$
where $\varepsilon=\varepsilon(\mathfrak{Z}_0)$, $t_n=t_n(\mathfrak{Z}_0)$, $k_{t,m}\in \mathbb{Z}_+$, $\sum_{t,m\in \mathbb{Z}_+\colon 2^{\theta t+m} \geqslant 2n \cdot 2^{-\varepsilon|t-t_n|}}k_{t,m}\underset{\mathfrak{Z}_0}{\lesssim} n$, and the lower estimate, to evaluation of
In estimating these widths, we use Proposition 1 and Theorems A, B.
1.
È. M. Galeev, “The Kolmogorov diameter of the intersection of classes of periodic functions and of finite-dimensional sets”, Math. Notes, 29:5 (1981), 382–388
2.
È. M. Galeev, “Kolmogorov widths of classes of periodic functions of one and several variables”, Math. USSR-Izv., 36:2 (1991), 435–448
3.
E. M. Galeev, “Kolmogorov and linear diameters of functional classes and finite dimensional sets”, Vladikavkaz. Mat. Zh., 13:2 (2011), 3–14 (Russian)
4.
A. A. Vasil'eva, “Kolmogorov widths of intersections of finite-dimensional balls”, J. Complexity, 72 (2022), 101649
5.
A. A. Vasil'eva, “Kolmogorov widths of weighted Sobolev classes on a multi-dimensional
domain with conditions on the derivatives of order $r$ and zero”, J. Approx. Theory, 269 (2021), 105602
6.
A. A. Vasil'eva, “Bounds for the Kolmogorov widths of the Sobolev weighted classes with conditions on the zero and highest derivatives”, Russ. J. Math. Phys., 29:2 (2022), 249–279
7.
V. M. Tikhomirov, Some questions in approximation theory, Izd-vo Mosk. Univ., Moscow, 1976 (Russian)
8.
V. M. Tikhomirov, “Approximation theory”, Analysis, v. II, Encyclopaedia Math. Sci., 14, Convex analysis and approximation theory, Springer-Verlag, Berlin, 1990, 93–243
9.
A. Pinkus, $n$-widths in approximation theory, Ergeb. Math. Grenzgeb. (3), 7, Springer-Verlag, Berlin, 1985
10.
S. L. Sobolev, Applications of functional analysis in mathematical physics, Transl. Math. Monogr., 7, Amer. Math. Soc., Providence, RI, 1963
11.
Yu. G. Reshetnyak, “Integral representations of differentiable functions in domains with nonsmooth boundary”, Siberian Math. J., 21:6 (1980), 833–839
12.
Yu. G. Reshetnyak, “A remark on integral representations of differentiable functions of several variables”, Sibirsk. Mat. Zh., 25:5 (1984), 198–200 (Russian)
13.
È. M. Galeev, “Approximation by Fourier sums of classes of functions with several bounded derivatives”, Math. Notes, 23:2 (1978), 109–117
14.
A. Pietsch, “$s$-numbers of operators in Banach space”, Studia Math., 51 (1974), 201–223
15.
M. I. Stesin, “Aleksandrov diameters of finite-dimensional sets and classes of smooth functions”, Soviet Math. Dokl., 16 (1975), 252–256
16.
B. S. Kašin, “Diameters of some finite-dimensional sets and classes of smooth functions”, Math. USSR-Izv., 11:2 (1977), 317–333
17.
E. D. Gluskin, “On some finite-dimensional problems of the theory of diameters”, Vestn. Leningr. Univ., 13 (1981), 5–10 (Russian)
18.
E. D. Gluskin, “Norms of random matrices and widths of finite-dimensional sets”, Math. USSR-Sb., 48:1 (1984), 173–182
19.
A. Yu. Garnaev and E. D. Gluskin, “On widths of the Euclidean ball”, Soviet Math. Dokl., 30 (1984), 200–204
20.
O. V. Besov, “Kolmogorov widths of Sobolev classes on an irregular domain”, Proc. Steklov Inst. Math., 280 (2013), 34–45
21.
A. A. Vasil'eva, “Widths of weighted Sobolev classes on a John domain”, Proc. Steklov Inst. Math., 280 (2013), 91–119
22.
S. M. Nikol'skiĭ, Approximation of functions of several variables and imbedding theorems, Grundlehren Math. Wiss., 205, Springer-Verlag, New York–Heidelberg, 1975
23.
O. V. Besov, V. P. Il'in, and S. M. Nikol'skiĭ, Integral representations of functions and imbedding theorems, v. I, II, Scripta Series in Mathematics, V. H. Winston & Sons, Washington, DC; Halsted Press [John Wiley & Sons], New York–Toronto, ON–London, 1978, 1979
24.
M. Bricchi, “Existence and properties of $h$-sets”, Georgian Math. J., 9:1 (2002), 13–32
Citation:
A. A. Vasil'eva, “Kolmogorov widths of an intersection of a finite family of Sobolev classes”, Izv. Math., 88:1 (2024), 18–42