Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2024, Volume 88, Issue 1, Pages 43–53
DOI: https://doi.org/10.4213/im9361e
(Mi im9361)
 

This article is cited in 1 scientific paper (total in 1 paper)

Ground states for fractional Choquard equations with doubly critical exponents and magnetic fields

Zhenyu Guoa, Lujuan Zhaob

a School of Mathematics, Liaoning Normal University, Dalian, China
b Ordos Second School Attached To Beijing Normal University, Ordos, Inner Mongolia, China
References:
Abstract: In this paper, we investigate the ground states for the fractional Choquard equations with doubly critical exponents and magnetic fields. We prove that the equation has a ground state solution by using the Nehari method and the Pokhozhaev identity.
Keywords: fractional Choquard equation, magnetic fields, doubly critical exponents, Nehari method, Pokhozhaev identity.
Funding agency Grant number
Natural Science Foundation of Liaoning Province 2021-MS-275
Educational Department Foundation of Liaoning Province LJKQZ2021093
This work is supported by NSFLN (no. 2021-MS-275) and EFLN (no. LJKQZ2021093).
Received: 21.04.2022
Revised: 26.02.2023
Bibliographic databases:
Document Type: Article
UDC: 517.95
MSC: 35L40, 76N10
Language: English
Original paper language: English

§ 1. Introduction

Consider the following fractional Choquard equations with doubly critical exponents and magnetic fields:

$$ \begin{equation} (-\Delta)_A^su+V(x)u=[I_{\alpha}\ast|u|^a]|u|^{a-2}u+[I_{\alpha}\ast|u|^b]|u|^{b-2}u \quad \text{in }\ \mathbb{R}^N, \end{equation} \tag{1.1} $$
where $N\geqslant3$, $s\in(0,1)$, $\alpha\in(0,N)$, $I_{\alpha}$ is the Riesz potential defined by
$$ \begin{equation*} I_{\alpha}=\frac{\Gamma((N-\alpha)/2)}{2^{\alpha}\pi^{N/2} \Gamma(N/2)|x|^{N-\alpha}}, \end{equation*} \notag $$
$a:=2^{\sharp}_{\alpha,s}=(N+\alpha)/N$ and $b:=2^*_{\alpha,s}=(N+\alpha)/(N-2s)$ are fractional lower and upper critical exponents in the sense of the Hardy–Littlewood–Sobolev inequality (see § 2 for more information on the Hardy–Littlewood–Sobolev inequality), $V\in(\mathbb{R}^N,\mathbb{R})$ is a continuous function, $u\in(\mathbb{R}^N,\mathbb{C})$ is a complex valued function, $A\in(\mathbb{R}^N,\mathbb{R}^N)$ is a magnetic potential, $(-\Delta)^s_A$ is a fractional magnetic Laplacian operator with $s\in(0,1)$. Up to normalization constants, $(-\Delta)^s_A$ can be defined on smooth complex valued functions $u \in C_{\mathrm{c}}^{\infty}(\mathbb{R}^N,\mathbb{C})$ by
$$ \begin{equation*} (-\Delta)^s_Au(x)=\lim_{\varepsilon\to0^{+}}\int_{B_{\varepsilon}^{c}(x)}\frac{e^{-i(x-y)\cdot A((x+y)/2)}u(x)-u(y)}{|x-y|^{N+2s}}\, dy\quad \text{in } \ \mathbb{R}^N, \end{equation*} \notag $$
where $B_{\varepsilon}(x)$ denotes a ball in $\mathbb{R}^N$ of radius $\varepsilon > 0$ with centre at $x\in\mathbb{R}^N$, and $B_{\varepsilon}^{c}(x)=\mathbb{R}^N\setminus B_{\varepsilon}(x)$. This nonlocal operator has been introduced by d’Avenia and Squassina [1] as a fractional extension of the magnetic pseudo-relativistic operator, or by Ichinose and Tamura [2] as a Weyl pseudo-differential operator defined by mid-point prescription. The motivation for its introduction belongs to the general theoretical framework of Lévy process.

Lots of scholars have studied the Choquard equation and its nontrivial solutions. For $A=0$ and $s\to1$, Ma and Zhao [3] studied the generalized Choquard equation, in particular, they proved that its positive solution is radially symmetric and monotone decreasing. Moroz and Van Schaftingen [4] proved the existence, regularity, positivity, radial symmetry and the decaying property of ground state solutions for Choquard equation. D’Avenia, Siciliano, and Squassina [5] showed some properties of the solution of the fractional Choquard equation.

In recent years, many people have paid attention to the Choquard equation with double critical exponents and studied it. Seok [6] studied the existence of nontrivial solutions for Choquard equation with double critical exponents. Su, Wang, Chen, and Liu [7] studied the multiplicity and concentration of positive solutions for the fractional Choquard equation

$$ \begin{equation*} \varepsilon^{2s}(-\Delta)^su+V(x)u=\varepsilon^{-\alpha}(I_{\alpha}\ast F(u))F'(u), \end{equation*} \notag $$
where $F(u)=|u|^{2^{\sharp}_{\alpha}}/2^{\sharp}_{\alpha} + |u|^{2^*_{\alpha}}/2^*_{\alpha}$. In [8], Lei and Zhang considered the existence of ground state solutions for the Choquard equations
$$ \begin{equation*} -\Delta u+u=(|x|^{\alpha-N}\ast|u|^{p})|u|^{p-2}u+(|x|^{\alpha-N}\ast|u|^q)|u|^{q-2}u; \end{equation*} \notag $$
they used the Pokhozhaev-type identity to overcome the loss of compactness caused by the doubly critical nonlinearities.

Inspired by the above works, we will discuss the existence of ground states for the fractional Choquard equation with doubly critical exponents and magnetic fields. In order to determine the existence of the ground states of equation (1.1), we use the Nehari method, which transforms the problem of seeking the ground states of the equation into the problem of finding the critical point of its corresponding energy functional. In addition, we apply the Pokhozhaev identity to overcome the loss of compactness caused by the doubly critical nonlinearities. Obviously, the study of the problem will become more complex because the magnetic fractional Laplacian operator and the doubly critical nonlinearities exist at the same time. As far as we know, it seems that there is almost no work on this subject.

Suppose that the potential $V\in(\mathbb{R}^N,\mathbb{R})$ is a continuous function. In order to accurately express our main results, we introduce the following assumptions:

(A) $A=(A_1,\dots,A_N)\in(\mathbb{R}^N,\mathbb{R}^N)$ is continuous;

(V) there exists $V_0>0$ such that $V(x)\geqslant V_0$.

In what follows, we state our main results.

Theorem 1.1. Assume that (A) and (V) hold. Then equation (1.1) has a ground state solution.

§ 2. Preliminaries

Let $L^2(\mathbb{R}^N,\mathbb{C})$ be the Lebesgue space with real inner product

$$ \begin{equation*} \langle u,v\rangle_{L^2}:=\operatorname{Re}\int_{\mathbb{R}^N}u\overline{v}\, dx, \end{equation*} \notag $$
and denote by $|\,{\cdot}\,|_{q}$ the norm of $L^q(\mathbb{R}^N)$, where $\operatorname{Re} z$ is the real part of a complex number $z$. Consider the fractional magnetic critical Sobolev space
$$ \begin{equation*} D_A^s(\mathbb{R}^N,\mathbb{C}):=\{u\in L^{2^\ast_s}(\mathbb{R}^N)\colon [u]_{D_A^s}<\infty\}, \end{equation*} \notag $$
where $[u]_{D_A^s}$ denotes the so-called magnetic Gagliardo semi-norm, that is,
$$ \begin{equation*} [u]^2_{D_A^s}=\int_{\mathbb{R}^{2N}}\frac{\bigl|e^{-i(x-y)\cdot A((x+y)/2)}u(x)-u(y)\bigr|^2}{|x-y|^{N+2s}}\, dx\, dy. \end{equation*} \notag $$
We consider the scalar product
$$ \begin{equation*} \begin{aligned} \, &\langle u,v\rangle_{D_A^s} \\ &=\operatorname{Re}\int_{\mathbb{R}^{2N}}\frac{\bigl(e^{-i(x-y)\cdot A((x+y)/2)}u(x)-u(y)\bigr) \overline{\bigl(e^{-i(x-y)\cdot A((x+y)/2)}v(x)-v(y)\bigr)}}{|x-y|^{N+2s}}\, dx\, dy, \end{aligned} \end{equation*} \notag $$
and the norm
$$ \begin{equation} \|u\|^2_{D_A^s}=\langle u,u\rangle_{D_A^s}=[u]^2_{D_A^s}. \end{equation} \tag{2.1} $$
We also define the fractional magnetic Hilbert space
$$ \begin{equation*} H_A^s(\mathbb{R}^N,\mathbb{C})=\biggl\{u\in D_A^s(\mathbb{R}^N,\mathbb{C})\colon \int_{\mathbb{R}^N}|u|^2\, dx<+\infty\biggr\}, \end{equation*} \notag $$
and the corresponding norm
$$ \begin{equation*} \| u\|^2_{H_A^s}=\| u\|^2_{D_A^s}+\int_{\mathbb{R}^N}|u|^2\, dx. \end{equation*} \notag $$

We set

$$ \begin{equation*} \mathcal{H}=\biggl\{u\in H_A^s(\mathbb{R}^N,\mathbb{C})\colon \int_{\mathbb{R}^N}V(x)u^2\, dx<+\infty\biggr\}. \end{equation*} \notag $$
Consider the associated inner product
$$ \begin{equation*} \langle u,v\rangle=\langle u,v\rangle_{D_A^s} +\operatorname{Re}\int_{\mathbb{R}^N}V(x)u\overline{v}\, dx, \end{equation*} \notag $$
and the corresponding norm
$$ \begin{equation*} \| u\|^2=\| u\|^2_{D_A^s}+\int_{\mathbb{R}^N}V(x)u^2\, dx, \end{equation*} \notag $$
which is equivalent to the norm $\|u\|^2_{H_A^s}$. Combining Lemma 3.5 in [1] and (V), we have the injection
$$ \begin{equation*} \mathcal{H}\hookrightarrow L^q(\mathbb{R}^N,\mathbb{C}) \end{equation*} \notag $$
is continuous for any $2\leqslant q\leqslant2_s^*$. Moreover, the injection
$$ \begin{equation*} \mathcal{H}\hookrightarrow L^q(K,\mathbb{C}) \end{equation*} \notag $$
is compact for any $2\leqslant q<2_s^*$, where $K\subset\mathbb{R}^N$ is a compact set and $2_s^*=2N/(N- 2s)$.

We point out that the weak solution of equation (1.1) is a critical point of the energy functional

$$ \begin{equation} \mathcal{I}_{s,A}(u)=\frac12\| u\|^2 -\frac1{2a}\int_{\mathbb{R}^N}[I_{\alpha}\ast|u|^a]|u|^a\, dx -\frac1{2b}\int_{\mathbb{R}^N}[I_{\alpha}\ast|u|^b]|u|^b\, dx \end{equation} \tag{2.2} $$
for each $u\in \mathcal{H}$. Define
$$ \begin{equation*} \mathcal{M}=\{u\in \mathcal{H}\setminus\{0\}\colon \langle \mathcal{I}'_{s,A}(u),u\rangle=0\}, \end{equation*} \notag $$
where
$$ \begin{equation*} \langle \mathcal{I}'_{s,A}(u),u\rangle=\| u\|^2-\int_{\mathbb{R}^N}[I_{\alpha}\ast|u|^a]|u|^a\, dx-\int_{\mathbb{R}^N}[I_{\alpha}\ast|u|^b]|u|^b\, dx. \end{equation*} \notag $$
We also define the Pokhozhaev functional
$$ \begin{equation*} \begin{aligned} \, \mathcal{P}(u)&=\frac{N-2s}{2}\| u\|^2_{D_A^s}+\frac{N}{2}\int_{\mathbb{R}^N}V(x)u^2\, dx-\frac{N+\alpha}{2a}\int_{\mathbb{R}^N}[I_{\alpha}\ast|u|^a]|u|^a\, dx \\ &\qquad -\frac{N+\alpha}{2b}\int_{\mathbb{R}^N}[I_{\alpha}\ast|u|^b]|u|^b\, dx. \end{aligned} \end{equation*} \notag $$
Hence any critical point $u$ of $\mathcal{I}_{s,A}$ satisfies $\mathcal{P}(u)= 0$.

Proposition 2.1 (the Hardy–Littlewood–Sobolev inequality [9]). Let $s,t>1$ and $0<\alpha<N$ with $1/s+(N-\alpha)/N+1/t=2$. If $f\in L^s(\mathbb{R}^N)$ and $g\in L^t(\mathbb{R}^N)$, then there exists a sharp constant $C(N,\alpha,s,t)$ independent of $f$ and $g$ such that

$$ \begin{equation*} \biggl|\int_{\mathbb{R}^N}\int_{\mathbb{R}^N}\frac{|f(x)|\,|g(y)|}{|x-y|^{N-\alpha}}\, dx\, dy\biggr|\leqslant C(N,\alpha,s,t)| f|_s| g|_t. \end{equation*} \tag{2.3} $$

Remark 2.1 (see [9]). If $s=t=2N/(N+\alpha)$, then

$$ \begin{equation*} C(N,\alpha,s,t)=C(N,\alpha) =\pi^{(N-\alpha)/2} \frac{\Gamma(\alpha/2)}{\Gamma(N+\alpha/2)}\biggl(\frac{\Gamma(N/2)}{\Gamma(N)}\biggr)^{\alpha/N}. \end{equation*} \notag $$

Based on Proposition 2.1, the integral

$$ \begin{equation*} \int_{\mathbb{R}^N}\int_{\mathbb{R}^N}\frac{|u(x)|^q|u(y)|^q}{|x-y|^{N-\alpha}}\, dx\, dy \end{equation*} \notag $$
(see [10]) is well defined if $|u|^q\in L^t(\mathbb{R}^N)$ for some $t>1$ and
$$ \begin{equation*} \frac{2}{t}+\frac{N-\alpha}{N}=2. \end{equation*} \notag $$
Thus, for any $u\in\mathcal{H}$, by the Sobolev embedding theorems, we have
$$ \begin{equation*} 2\leqslant tq\leqslant\frac{2N}{N-2s}, \end{equation*} \notag $$
that is,
$$ \begin{equation*} \frac{N+\alpha}{N}\leqslant q\leqslant\frac{N+\alpha}{N-2s}. \end{equation*} \notag $$
Therefore, $(N+\alpha)/N$ is known as the fractional lower critical exponent, and $(N+ \alpha)/(N-2s)$ is the fractional upper critical exponent in the sense of the Hardy–Littlewood–Sobolev inequality.

Lemma 2.1. For each $u\in\mathcal{H}\setminus\{0\}$ and $k>0$, the functional $\mathcal{I}_{s,A}(ku)$ has a unique critical point which corresponds to its maximum.

Proof. For each $u\in\mathcal{H}\setminus\{0\}$, we have
$$ \begin{equation*} \begin{aligned} \, \mathcal{I}_{s,A}(ku) &=\frac{k^2}{2}\biggl(\| u\|^2_{D_A^s}+\int_{\mathbb{R}^N}V(x)u^2\, dx\biggr) -\frac{k^{2a}}{2a}\int_{\mathbb{R}^N}[I_{\alpha}\ast|u|^a]|u|^a\, dx \\ &\qquad -\frac{k^{2b}}{2b}\int_{\mathbb{R}^N}[I_{\alpha}\ast|u|^b]|u|^b\, dx. \end{aligned} \end{equation*} \notag $$
It is easily checked that $\mathcal{I}_{s,A}(ku)\to-\infty$ as $k\to+\infty$. By Proposition 2.1,
$$ \begin{equation*} \begin{aligned} \, &\int_{\mathbb{R}^N}[I_{\alpha}\ast|u|^b]|u|^b\, dx \\ &\quad\leqslant C(N,\alpha)\biggl(\int_{\mathbb{R}^N}|u|^{b \cdot 2N/(N+\alpha)}\, dx\biggr)^{(N+\alpha)/(2N)} \biggl(\int_{\mathbb{R}^N}|u|^{b \cdot 2N/(N+\alpha)}\, dx\biggr)^{(N+\alpha)/(2N)} \\ &\quad=C(N,\alpha)|u|^{2b}_{b}. \end{aligned} \end{equation*} \notag $$
A similar analysis shows that $\int_{\mathbb{R}^N}[I_{\alpha}\ast|u|^a]|u|^a\, dx\leqslant C(N,\alpha)|u|_2^{2a}$. Therefore, by (V),
$$ \begin{equation*} \mathcal{I}_{s,A}(ku) \geqslant\frac{k^2}{2}\| u\|^2_{D_A^s} -\frac{k^{2a}}{2a}C(N,\alpha)|u|_2^{2a} -\frac{k^{2b}}{2b}C(N,\alpha)|u|^{2b}_{b}>0 \end{equation*} \notag $$
for sufficiently small $k>0$. Furthermore,
$$ \begin{equation*} \begin{aligned} \, \langle I'_{s,A}(ku),u\rangle &=k\| u\|^2-k^{2a-1}\int_{\mathbb{R}^N}[I_{\alpha}\ast|u|^a]|u|^a\, dx -k^{2b-1}\int_{\mathbb{R}^N}[I_{\alpha}\ast|u|^b]|u|^b\, dx \\ &\geqslant k\| u\|^2-k^{2a-1}C(N,\alpha)|u|_2^{2a}-k^{2b-1}C(N,\alpha)|u|^{2b}_{2_s^*}>0 \end{aligned} \end{equation*} \notag $$
for sufficiently small $k>0$. Thus, $\mathcal{I}_{s,A}(ku)$ has a critical point $k_0>0$ such that $I'_{s,A}(k_0u)=0$, and $I'_{s,A}(ku)>0$ as $0<k<k_0$.

In what follows, we will prove the uniqueness of the critical point of $\mathcal{I}_{s,A}(ku)$. We set

$$ \begin{equation*} f(t)=a_1t^2-a_2t^{2a}-a_3t^{2b} \end{equation*} \notag $$
for $t>0$. It can be shown that $f(0)=0$, $f(t)>0$ for sufficiently small $t>0$ and $f(t)\to-\infty$ as $t\to+\infty$. Therefore, we assume by contradiction that $f$ has at least three positive critical points $t_1$, $t_2$, $t_3$, and
$$ \begin{equation*} 0<t_1<t_2<t_3<+\infty. \end{equation*} \notag $$
Hence we have
$$ \begin{equation*} f'(t)=2a_1t-2aa_2t^{2a-1}-2ba_3t^{2b-1} =t(2a_1-2aa_2t^{2a-2}-2ba_3t^{2b-2}) \end{equation*} \notag $$
and
$$ \begin{equation*} f'(t_1)=f'(t_2)=f'(t_3)=0. \end{equation*} \notag $$
Let
$$ \begin{equation*} g(t)=2a_1-2aa_2t^{2a-2}-2ba_3t^{2b-2}. \end{equation*} \notag $$
Then
$$ \begin{equation*} g(t_1)=g(t_2)=g(t_3)=0. \end{equation*} \notag $$
Thus, $g$ has at least two positive critical points $\eta_1\in(t_1,t_2)$, $\eta_2\in(t_2,t_3)$, which satisfy
$$ \begin{equation*} g'(\eta_1)=g'(\eta_2)=0. \end{equation*} \notag $$
However,
$$ \begin{equation*} \begin{aligned} \, g'(t) &=-2a(2a-2)a_2t^{2a-3}-2b(2b-2)a_3t^{2b-3} \\ &=t^{2a-3}[-2a(2a-2)a_2-2b(2b-2)a_3t^{2(b-a)}]. \end{aligned} \end{equation*} \notag $$
Thus, we obtain that $\eta_1=\eta_2$, which is contradictory.

Therefore, $\mathcal{I}_{s,A}(ku)$ has a unique critical point which corresponds to its maximum. Lemma is proved.

Remark 2.2. If $u$ is a critical point of $\mathcal{I}_{s,A}$, then the maximum of $\mathcal{I}_{s,A}(ku)$ should be achieved at $k=1$.

Define

$$ \begin{equation*} \mathcal{N}_{\rho}=\{u\in\mathcal{H}\colon \| u\|=\rho\}. \end{equation*} \notag $$

Lemma 2.2. There exist $\delta,\rho>0$ such that $\mathcal{I}_{s,A}(u)\geqslant\delta$ for any $u\in\mathcal{N}_{\rho}$.

Proof. Suppose that $\| u\|=\rho>0$, which is small enough. According to Proposition 2.1 and Sobolev inequality, we have
$$ \begin{equation} \begin{aligned} \, \mathcal{I}_{s,A}(u) &=\frac12\| u\|^2-\frac1{2a}\int_{\mathbb{R}^N}[I_{\alpha}\ast|u|^a]|u|^a\, dx -\frac1{2b}\int_{\mathbb{R}^N}[I_{\alpha}\ast|u|^b]|u|^b\, dx \nonumber \\ &\geqslant\frac12\| u\|^2-C_1\| u\|^{2a}-C_2\| u\|^{2b} \geqslant\frac12\rho^2-C_1\rho^{2a}-C_2\rho^{2b}>0. \end{aligned} \end{equation} \tag{2.4} $$
Let $\delta=\frac12\rho^2-C_1\rho^{2a}-C_2\rho^{2b}$. Then, we have $\mathcal{I}_{s,A}(u)\geqslant\delta>0$. Lemma is proved.

Lemma 2.3. The set $\mathcal{M}$ is a $C^{1}$ manifold.

Proof. We set
$$ \begin{equation} \begin{aligned} \, \mathcal{J}(u) &=\langle I'_{s,A}(u),u\rangle-\frac{2\alpha}{N(2s+\alpha)}\mathcal{P}(u) \nonumber \\ &=\frac{2s}{2s+\alpha}\biggl(a\| u\|^2_{D_A^s}+\int_{\mathbb{R}^N}V(x)u^2\, dx -\int_{\mathbb{R}^N}[I_{\alpha}\ast|u|^a]|u|^a\, dx \nonumber \\ &\qquad -a\int_{\mathbb{R}^N}[I_{\alpha}\ast|u|^b]|u|^b\, dx\biggr). \end{aligned} \end{equation} \tag{2.5} $$
We assume by contradiction that there exists $u_*\in\mathcal{M}$ such that $\mathcal{J}'(u_*)=0$. Then, we have
$$ \begin{equation} \begin{aligned} \, &a\| u_*\|^2_{D_A^s}+\int_{\mathbb{R}^N}V(x)u_*^2\, dx \nonumber \\ &\qquad=a\int_{\mathbb{R}^N}[I_{\alpha}\ast|u_*|^a]|u_*|^a\, dx +ab\int_{\mathbb{R}^N}[I_{\alpha}\ast|u_*|^b]|u_*|^b\, dx \end{aligned} \end{equation} \tag{2.6} $$
and
$$ \begin{equation} \begin{aligned} \, &a\| u_*\|^2_{D_A^s}+\int_{\mathbb{R}^N}V(x)u_*^2\, dx \nonumber \\ &\qquad=\int_{\mathbb{R}^N}[I_{\alpha}\ast|u_*|^a]|u_*|^a\, dx +a\int_{\mathbb{R}^N}[I_{\alpha}\ast|u_*|^b]|u_*|^b\, dx. \end{aligned} \end{equation} \tag{2.7} $$
Then, by (2.6) and (2.7), we obtain that
$$ \begin{equation*} (a-1)\int_{\mathbb{R}^N}[I_{\alpha}\ast|u_*|^a]|u_*|^a\, dx +a(b-1)\int_{\mathbb{R}^N}[I_{\alpha}\ast|u_*|^b]|u_*|^b\, dx=0, \end{equation*} \notag $$
which is contradictory. Therefore, $\mathcal{J}'(u_*)\neq0$. This proves Lemma 2.1.

Lemma 2.4. For each $u\in\mathcal{M}$, $\inf_{u\in\mathcal{M}}\mathcal{I}_{s,A}(u)>0$.

Proof. For each $u\in\mathcal{M}$, we have $\mathcal{P}(u)=0$. Now by (2.5)
$$ \begin{equation*} \begin{aligned} \, \mathcal{I}_{s,A}(u) &=\frac12\biggl(\| u\|^2_{D_A^s}+\int_{\mathbb{R}^N}V(x)u^2\, dx\biggr) -\frac1{2b}\int_{\mathbb{R}^N}[I_{\alpha}\ast|u|^b]|u|^b\, dx \\ &\qquad -\frac1{2a}\biggl(a\| u\|^2_{D_A^s}+\int_{\mathbb{R}^N}V(x)u^2\, dx -a\int_{\mathbb{R}^N}[I_{\alpha}\ast|u|^b]|u|^b\, dx\biggr) \\ &=\biggl(\frac12-\frac1{2a}\biggr)\int_{\mathbb{R}^N}V(x)u^2\, dx +\biggl(\frac12-\frac1{2b}\biggr)\int_{\mathbb{R}^N}[I_{\alpha}\ast|u|^b]|u|^b\, dx>0. \end{aligned} \end{equation*} \notag $$
Therefore, we have $\inf_{\mathcal{M}}\mathcal{I}_{s,A}>0$, proving the lemma.

Lemma 2.5. There exists $\delta_{\ast}>0$ such that

$$ \begin{equation*} k_u\geqslant \delta_{\ast} \quad \forall\, u\in\mathcal{N}_1, \end{equation*} \notag $$
and, for every compact subset $W\subset\mathcal{N}_1$, there exists $C_{W}>0$ such that
$$ \begin{equation*} k_u\leqslant C_{W} \quad \forall\, u\in W. \end{equation*} \notag $$

Proof. For each $u\in\mathcal{N}_1$, by Lemma 2.1 there exists a unique $k_u>0$ such that $k_uu\in\mathcal{M}$. Hence
$$ \begin{equation*} \begin{aligned} \, 0 &=\langle \mathcal{I}'_{s,A}(k_uu),k_uu\rangle \geqslant k_u^2\| u\|^2-k_u^{2a}C_1 \|u\|^{2a}-k_u^{2b}C_2\| u\|^{2b} \\ &=k_u^{\,2}- C_1k_u^{2a}-C_2k_u^{\,2b}, \end{aligned} \end{equation*} \notag $$
which means that, for every $u\in\mathcal{N}_1$, there exists $\delta_{\ast}>0$ such that $k_u\geqslant\delta_{\ast}$.

Assume on the contrary that, for every $n\in\mathbb{N}$, there exists $\{u_n\}\subset W\subset\mathcal{N}_1$ such that $k_{u_n}\to+\infty$ as $n\to\infty$. By compactness of $W$, we can suppose that there exists $u\in W$ such that $u_n\to u$ as $n\to\infty$.

Assume that

$$ \begin{equation*} Q(u):=\frac1{2b}\int_{\mathbb{R}^N}[I_{\alpha}\ast|u|^b]|u|^b\, dx, \qquad u \in \mathcal{H}, \end{equation*} \notag $$
and
$$ \begin{equation*} G(u):=\frac1{2a}\int_{\mathbb{R}^N}[I_{\alpha}\ast|u|^a]|u|^a\, dx, \qquad u \in \mathcal{H}. \end{equation*} \notag $$
Hence
$$ \begin{equation} \begin{aligned} \, Q(k_{u_n}u_n) &=\frac1{2b}k^{2b}_{u_n}\int_{\mathbb{R}^N}[I_{\alpha}\ast|u_n|^b]|u_n|^b\, dx \nonumber \\ &=k^{2b}_{u_n}\| u_n\|^{2b}\frac1{2b\| u_n\|^{2b}} \int_{\mathbb{R}^N}[I_{\alpha}\ast|u_n|^b]|u_n|^b\, dx \nonumber \\ &=k^{2b}_{u_n}\| u_n\|^{2b}\frac1{2b}\int_{\mathbb{R}^N}\biggl[I_{\alpha}\ast\biggl|\frac{u_n}{\| u_n\|}\biggr|^b\biggr]\biggl|\frac{u_n}{\| u_n\|}\biggr|^b\, dx =k^{2b}_{u_n}\| u_n\|^{2b}Q\biggl(\frac{u_n}{\| u_n\|}\biggr). \end{aligned} \end{equation} \tag{2.8} $$
A similar analysis shows that
$$ \begin{equation} G(k_{u_n}u_n)=k^{2a}_{u_n}\| u_n\|^{2a}G\biggl(\frac{u_n}{\| u_n\|}\biggr). \end{equation} \tag{2.9} $$
By (2.8) and (2.9), we have
$$ \begin{equation*} \begin{aligned} \, \mathcal{I}_{s,A}(k_{u_n}u_n) &=\frac12k_{u_n}^2\| u_n\|^2-G(k_{u_n}u_n)-Q(k_{u_n}u_n) \\ &=\frac12k_{u_n}^2\| u_n\|^2-k^{2a}_{u_n}\| u_n\|^{2a}G\biggl(\frac{u_n}{\|u_n\|}\biggr) -k^{2b}_{u_n}\| u_n\|^{2b}Q\biggl(\frac{u_n}{\| u_n\|}\biggr) \\ &=\frac12k_{u_n}^2-k^{2a}_{u_n}G(u_n)-k^{2b}_{u_n}Q(u_n)\to-\infty \quad \text{as }\ n\to\infty. \end{aligned} \end{equation*} \notag $$
However, since $k_{u_n}u_n\in\mathcal{M}$, we have
$$ \begin{equation*} \begin{aligned} \, &\lim_{n\to\infty}\mathcal{I}_{s,A}(k_{u_n}u_n) \\ &=\lim_{n\to\infty}\biggl[\frac12k_{u_n}^2 \biggl(\|u_n\|^2_{D_A^s}+\int_{\mathbb{R}^N}V(x)u_n^2\, dx\biggr)- \frac{k^{2b}_{u_n}}{2b}\int_{\mathbb{R}^N}[I_{\alpha}\ast|u_n|^b]|u_n|^b\, dx\biggr] \\ &\quad -\lim_{n\to\infty}\frac1{2a}\biggl(ak_{u_n}^2\|u_n\|^2_{D_A^s} +k_{u_n}^2\int_{\mathbb{R}^N}V(x)u_n^2\, dx -ak^{2b}_{u_n}\int_{\mathbb{R}^N}[I_{\alpha}\ast|u_n|^b]|u_n|^b\, dx\biggr) \\ &=\lim_{n\to\infty}\biggl[\biggl(\frac12-\frac1{2a}\biggr)k_{u_n}^2\int_{\mathbb{R}^N} \! V(x)u_n^2\, dx \,{+}\,\biggl(\frac12-\frac1{2b}\biggr)k^{2b}_{u_n} \int_{\mathbb{R}^N}[I_{\alpha}\ast|u_n|^b]|u_n|^b\, dx\biggr]{>}\,0. \end{aligned} \end{equation*} \notag $$
This contradiction proves the lemma.

Define the mapping $\mu\colon \mathcal{N}_1\to\mathcal{M}$ by $\mu(w):=k_ww$, where $k_w$ is as in Lemma 2.1.

Lemma 2.6 (see [11]). The mapping $\mu$ is a homeomorphism between $\mathcal{N}_1$ and $\mathcal{M}$, and the inverse mapping of $\mu$ is given by $\mu^{-1}(u)=u/\|u\|$.

Consider the functional $\varUpsilon\in(\mathcal{N}_1,\mathbb{R})$ defined by

$$ \begin{equation*} \varUpsilon(w):=\mathcal{I}_{s,A}(\mu(w)), \end{equation*} \notag $$

The following result holds.

Lemma 2.7 (see [11]). The following holds.

(i) For every $n\in\mathbb{N}$, if $\{w_n\}$ is a Palais–Smale sequence for $\varUpsilon$, then $\{\mu(w_n)\}$ is a Palais–Smale sequence for $\mathcal{I}_{s,A}$. Conversely, if $\{u_n\}\subset\mathcal{M}$ is a bounded Palais–Smale sequence for $\mathcal{I}_{s,A}$, then $\{\mu^{-1}(u_n)\}$ is a Palais–Smale sequence for $\varUpsilon$.

(ii) $w\in\mathcal{N}_1$ is a critical point of $\varUpsilon$ if and only if $\mu(w)$ is a nontrivial critical point of $\mathcal{I}_{s,A}$. In addition, the corresponding values of $\varUpsilon$ and $\mathcal{I}_{s,A}$ are equal, and $\inf_{\mathcal{N}_1}\varUpsilon=\inf_{\mathcal{M}}\mathcal{I}_{s,A}$.

(iii) The minimum of $\mathcal{I}_{s,A}$ on $\mathcal{M}$ is the ground state solution of equation (1.1).

§ 3. Proof of Theorem 1.1

In this section, we will prove Theorem 1.1.

Proof of Theorem 1.1. Let $\{w_n\}_{n\in\mathbb{N}}\subset\mathcal{N}_1$ be a minimizing sequence for $\varUpsilon$. By (ii) of Lemma 2.7,
$$ \begin{equation} \varUpsilon(w_n)\to c=\inf_{\mathcal{N}_1}\varUpsilon\quad \text{as }\ n\to\infty. \end{equation} \tag{3.1} $$
For $n\in\mathbb{N}$, set $u_n=\mu(w_n)\in\mathcal{M}$. By the Ekeland variational principle, we can assume that $\varUpsilon'(w_n)\to0$ in the dual $\mathcal{H}^*$ of $\mathcal{H}$. By (i), (ii) of Lemma 2.7 and (3.1), we have
$$ \begin{equation} \mathcal{I}_{s,A}(u_n)=\varUpsilon(\mu^{-1}(u_n))=\varUpsilon(w_n)\to c=\inf_{\mathcal{M}}\mathcal{I}_{s,A} \end{equation} \tag{3.2} $$
and
$$ \begin{equation} \mathcal{I}'_{s,A}(u_n)\to0\quad\text{in }\ \mathcal{H}^* \end{equation} \tag{3.3} $$
as $n\to\infty$. Furthermore, $\mathcal{P}(u_n)=0$. Then, by (V), we have
$$ \begin{equation*} \begin{aligned} \, c+o(1)>\mathcal{I}_{s,A}(u_n) &=\mathcal{I}_{s,A}(u_n)-\frac1l{N+\alpha}\mathcal{P}(u_n) \\ &\geqslant\biggl(\frac12-\frac{N-2s}{2(N+\alpha)}\biggr) \|u_n\|_{D_A^s}^2 +\biggl(\frac12-\frac{N}{2(N+\alpha)}\biggr)V_0\int_{\mathbb{R}^N}u_n^2\, dx, \end{aligned} \end{equation*} \notag $$
which means that $\{u_n\}_{n\in\mathbb{N}}$ is bounded in $\mathcal{H}$. Hence, in the sense of subsequence, we have
$$ \begin{equation*} \begin{aligned} \, u_n &\rightharpoonup u_0\quad \text{in }\ \mathcal{H}, \\ u_n &\to u_0\quad \text{in }\ L^q(K,\mathbb{C})\text{ for }2\leqslant q<2_s^*, \\ u_n(x) &\to u_0(x)\quad \text{a. e. on }\ \mathbb{R}^N, \end{aligned} \end{equation*} \notag $$
where $K\subset\mathbb{R}^N$ is a compact set. Since $\mathcal{I}'_{s,A}(u_n)\to0$ as $n\to\infty$, we have
$$ \begin{equation*} \begin{aligned} \, 0=\langle \mathcal{I}'_{s,A}(u_0),v\rangle &=\langle u_0,v\rangle -\operatorname{Re}\int_{\mathbb{R}^N}[I_{\alpha}\ast|u_0|^a]|u_0|^{a-1}\overline{v}\, dx \\ &\qquad -\operatorname{Re}\int_{\mathbb{R}^N}[I_{\alpha}\ast|u_0|^b]|u_0|^{b-1}\overline{v}\, dx \end{aligned} \end{equation*} \notag $$
for each $v\in\mathcal{H}$. Thus,
$$ \begin{equation*} \mathcal{I}'_{s,A}(u_0)=0 \quad\text{and} \quad \mathcal{P}(u_0)=0. \end{equation*} \notag $$
Combining this with Lemma 2.4, we find that $u_0\neq0$ and $u_0\in\mathcal{M}$. By Lemma 2.4 in [4] and Lemma 1.32 in [12], we have
$$ \begin{equation} \lim_{n\to\infty}\biggl(\int_{\mathbb{R}^N}|u_n-u_0|^2\, dx-\int_{\mathbb{R}^N}|u_n|^2\, dx\biggr) =\int_{\mathbb{R}^N}|u_0|^2\, dx, \end{equation} \tag{3.4} $$
$$ \begin{equation} \lim_{n\to\infty}\bigl(\| u_n-u_0\|_{D_A^s}^2-\| u_n\|^2_{D_A^s}\bigr)=\| u_0\|_{D_A^s}^2, \end{equation} \tag{3.5} $$
$$ \begin{equation} \begin{split} &\lim_{n\to\infty}\biggl(\int_{\mathbb{R}^N}[I_{\alpha}\ast|u_n-u_0|^b]|u_n-u_0|^b\, dx -\int_{\mathbb{R}^N}[I_{\alpha}\ast|u_n|^b]|u_n|^b\, dx\biggr) \\ &\qquad=\int_{\mathbb{R}^N}[I_{\alpha}\ast|u_0|^b]|u_0|^b\, dx \end{split} \end{equation} \tag{3.6} $$
and
$$ \begin{equation} \begin{aligned} \, &\lim_{n\to\infty}\biggl(\int_{\mathbb{R}^N}[I_{\alpha}\ast|u_n-u_0|^a]|u_n-u_0|^a\, dx -\int_{\mathbb{R}^N}[I_{\alpha}\ast|u_n|^a]|u_n|^a\, dx\biggr) \nonumber \\ &\qquad=\int_{\mathbb{R}^N}[I_{\alpha}\ast|u_0|^a]|u_0|^a\, dx. \end{aligned} \end{equation} \tag{3.7} $$
Since $\mathcal{P}(u_0)=0$ and using (3.4)(3.7), we have
$$ \begin{equation*} \lim_{n\to\infty}\mathcal{P}(u_n-u_0)=\lim_{n\to\infty}\mathcal{P}(u_n)=0. \end{equation*} \notag $$
In addition, $\langle\mathcal{I}'_{s,A}(u_0),u_0\rangle=0$ and $\langle\mathcal{I}'_{s,A}(u_n),u_n\rangle=o(1)$, and hence
$$ \begin{equation} \langle \mathcal{I}'_{s,A}(u_n-u_0),u_n-u_0\rangle=o(1). \end{equation} \tag{3.8} $$
Therefore,
$$ \begin{equation*} \begin{aligned} \, &\mathcal{P}(u_n-u_0)-\frac{N-2s}{2}\langle \mathcal{I}'_{s,A}(u_n-u_0),u_n-u_0\rangle \\ &\qquad=s\biggl(\int_{\mathbb{R}^N}V(x)|u_n-u_0|^2\, dx -\int_{\mathbb{R}^N}[I_{\alpha}\ast|u_n-u_0|^a]|u_n-u_0|^a\, dx\biggr)=o(1), \end{aligned} \end{equation*} \notag $$
that is,
$$ \begin{equation} \int_{\mathbb{R}^N}V(x)|u_n-u_0|^2\, dx=\int_{\mathbb{R}^N}[I_{\alpha}\ast|u_n-u_0|^a]|u_n-u_0|^a\, dx+o(1). \end{equation} \tag{3.9} $$
Now by (3.8) and (3.9) we have
$$ \begin{equation*} \begin{aligned} \, \mathcal{I}_{s,A}(u_n) &=\mathcal{I}_{s,A}(u_n-u_0)+\mathcal{I}_{s,A}(u_0)+o(1) \\ &=\frac{a-1}{2a}\| u_n-u_0\|^2_{D_A^s}+\frac{a-1}{2a}\int_{\mathbb{R}^N}V(x)|u_n-u_0|^2\, dx \\ &\qquad -\frac{a-b}{2ab}\int_{\mathbb{R}^N}[I_{\alpha}\ast|u_n-u_0|^b]|u_n-u_0|^b\, dx +\mathcal{I}_{s,A}(u_0)+o(1) \\ &=\frac{a-1}{2a}\| u_n-u_0\|^2_{D_A^s}+\frac{b-1}{2b}\int_{\mathbb{R}^N}V(x)|u_n-u_0|^2\, dx +\mathcal{I}_{s,A}(u_0)+o(1) \\ &\geqslant\mathcal{I}_{s,A}(u_0)+o(1). \end{aligned} \end{equation*} \notag $$
Hence $\mathcal{I}_{s,A}(u_0)\leqslant c$. Since $\mathcal{I}_{s,A}(u_0)\geqslant c$, we find that $\mathcal{I}_{s,A}(u_0)=c$. This means that $u_0$ is a ground state solution of equation (1.1). Theorem 1.1 is proved.

Bibliography

1. P. d'Avenia and M. Squassina, “Ground states for fractional magnetic operators”, ESAIM Control Optim. Calc. Var., 24:1 (2018), 1–24  crossref  mathscinet  zmath
2. T. Ichinose and H. Tamura, “Imaginary-time path integral for a relativistic spinless particle in an electromagnetic field”, Comm. Math. Phys., 105:2 (1986), 239–257  crossref  mathscinet  zmath  adsnasa
3. Li Ma and Lin Zhao, “Classification of positive solitary solutions of the nonlinear Choquard equation”, Arch. Ration. Mech. Anal., 195:2 (2010), 455–467  crossref  mathscinet  zmath  adsnasa
4. V. Moroz and J. Van Schaftingen, “Groundstates of nonlinear Choquard equations: existence, qualitative properties and decay asymptotics”, J. Funct. Anal., 265:2 (2013), 153–184  crossref  mathscinet  zmath
5. P. d'Avenia, G. Siciliano, and M. Squassina, “On fractional Choquard equations”, Math. Models Methods Appl. Sci., 25:8 (2015), 1447–1476  crossref  mathscinet  zmath
6. Jinmyoung Seok, “Nonlinear Choquard equations: doubly critical case”, Appl. Math. Lett., 76 (2018), 148–156  crossref  mathscinet  zmath
7. Yu Su, Li Wang, Haibo Chen, and Senli Liu, “Multiplicity and concentration results for fractional Choquard equations: doubly critical case”, Nonlinear Anal., 198 (2020), 111872  crossref  mathscinet  zmath
8. Chun-Yu Lei and Binlin Zhang, “Ground state solutions for nonlinear Choquard equations with doubly critical exponents”, Appl. Math. Lett., 125 (2022), 107715  crossref  mathscinet  zmath
9. E. H. Lieb and M. P. Loss, Analysis, Grad. Stud. Math., 14, 2nd ed., Amer. Math. Soc., Providence, RI, 2001  crossref  mathscinet  zmath
10. Zifei Shen, Fashun Gao, and Minbo Yang, Groundstates for nonlinear fractional Choquard equations with general nonlinearities, 2014, arXiv: 1412.3184
11. A. Szulkin and T. Weth, “The method of Nehari manifold”, Handbook of nonconvex analysis and applications, Int. Press, Somerville, MA, 2010, 597–632  mathscinet  zmath
12. M. Willem, Minimax theorems, Progr. Nonlinear Differential Equations Appl., 24, Birkhäuser Boston, Inc., Boston, MA, 1996  crossref  mathscinet  zmath

Citation: Zhenyu Guo, Lujuan Zhao, “Ground states for fractional Choquard equations with doubly critical exponents and magnetic fields”, Izv. Math., 88:1 (2024), 43–53
Citation in format AMSBIB
\Bibitem{GuoZha24}
\by Zhenyu~Guo, Lujuan~Zhao
\paper Ground states for fractional Choquard equations with doubly critical exponents and magnetic fields
\jour Izv. Math.
\yr 2024
\vol 88
\issue 1
\pages 43--53
\mathnet{http://mi.mathnet.ru//eng/im9361}
\crossref{https://doi.org/10.4213/im9361e}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4727540}
\zmath{https://zbmath.org/?q=an:1537.35378}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2024IzMat..88...43G}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=001202734300003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85203195631}
Linking options:
  • https://www.mathnet.ru/eng/im9361
  • https://doi.org/10.4213/im9361e
  • https://www.mathnet.ru/eng/im/v88/i1/p47
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024