Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2023, Volume 87, Issue 5, Pages 941–946
DOI: https://doi.org/10.4213/im9356e
(Mi im9356)
 

Symmetries and conservation laws of the Liouville equation

V. V. Zharinov

Steklov Mathematical Institute of Russian Academy of Sciences, Moscow, Russia
References:
Abstract: Symmetries and conservation laws of the Liouville equation are studied in the frames of the algebra-geometrical approach to partial differential equations.
Keywords: Liouville equation, symmetry, conservation law, evolution derivation, evolution Lie bracket, variational derivative, first integral.
Received: 17.04.2022
Revised: 19.09.2022
Bibliographic databases:
Document Type: Article
UDC: 530.13
MSC: 35Q99, 34C14, 35A30
Language: English
Original paper language: English

§ 1. Introduction

Symmetries and conservation laws of the Liouville equation are studied in the frames of the algebra-geometrical approach to partial differential equations. Interest in the Liouville equation and its properties has intensified recently due to its important role in functional mechanics proposed by I. V. Volovich (see [1]–[3]).

1.1. Main ingredients

The article is quite computational, to make it more readable we first clarify the designations. Namely, below:

The main functional algebras are:

Remark 1. A number $r\in\mathbb{Z}_+$ is called the order of a function $f(t,\mathrm{x},\mathbf{u})\in\mathcal{A}$, $\operatorname{ord} f= r$, if the partial derivative $\partial_{u_\mathrm{i}}f\ne0$ for some index $\mathrm{i}\in\mathbb{I}$, $|\mathrm{i}|=r$, while the partial derivatives $\partial_{u_\mathrm{i}}f=0$ for all indexes $\mathrm{i}\in\mathbb{I}$, $|\mathrm{i}|>r$.

The main linear operators are:

1.2. The Liouville equation

The Liouville equation has the form

$$ \begin{equation} L\phi=\partial_t \phi+\partial_{x^\mu}(v^\mu\cdot \phi) =\frac{d\phi}{dt} +\operatorname{div}\mathrm{v}\cdot\phi=0, \end{equation} \tag{1} $$
where $\phi(t,\mathrm{x})\in\Phi$ is an unknown function, $\mathrm{v} \colon \mathrm{X}\to\mathrm{X}$ is a given vector field.

Theorem 1. The general solution $\phi(t,\mathrm{x})\in\Phi$ of the Liouville equation (1) is implicitly defined by the equality

$$ \begin{equation*} K(\varkappa,s^1,\dots,s^m)=0, \end{equation*} \notag $$
where $K$ is an arbitrary function, while $\varkappa(t,\mathrm{x},\phi)$, $\mathrm{s} =(s^1(t,\mathrm{x}),\dots,s^m(t,\mathrm{x}))$ are the first integrals of the system of the ordinary differential equations
$$ \begin{equation*} \frac{dt}1=\frac{dx^1}{v^1}=\dots=\frac{dx^m}{v^m} =-\frac{d\phi}{\operatorname{div}\mathrm{v}\cdot\phi}. \end{equation*} \notag $$

The proof of this and the analogous theorems below follows from the theory of differential equations in partial derivatives of the first order (see [4], for example).

The situation simplifies when the vector field $\mathrm{v}$ is divergence free, the general solution can be found in the explicit form. Indeed, if $\operatorname{div}\mathrm{v}=0$, then the Liouville equation (1) takes the form

$$ \begin{equation} L\phi=\frac{d\phi}{dt}=\partial_t\phi+v^\mu\partial_{x^\mu}\phi=0, \end{equation} \tag{2} $$
and has the general solution $\phi=\rho(s)$, where $\rho$ is an arbitrary function, while $\mathrm{s}=(s^1(t,\mathrm{x}),\dots,s^m(t,\mathrm{x}))$ are the first integrals of the shorten system
$$ \begin{equation*} \frac{dt}1=\frac{dx^1}{v^1}=\dots=\frac{dx^m}{v^m}. \end{equation*} \notag $$

§ 2. Symmetries

The Lie algebra of symmetries of the Liouville equation (1) is defined as

$$ \begin{equation} \operatorname{Sym}(L)=\{\zeta=\operatorname{ev}_g \mid g\in\mathcal{A}, \ \mathbf{L} g =D_tg+D_\mu(v^\mu g)=0\}\simeq\operatorname{Ker}\mathbf{L}, \end{equation} \tag{3} $$
where the evolution derivation $\operatorname{ev}_g=D_\mathrm{i} g\cdot\partial_{u_\mathrm{i}}$, the evolution Lie bracket
$$ \begin{equation*} [\operatorname{ev}_g,\operatorname{ev}_h]=\operatorname{ev}_{\{g,h\}}, \qquad \{g,h\}=\operatorname{ev}_gh-\operatorname{ev}_hg, \quad g,h\in\mathcal{A} \end{equation*} \notag $$
(see [5]–[7], for example). In particular, the linear space $\operatorname{Ker}\mathbf{L}$ here possesses the induced structure of the Lie algebra with the Lie bracket $\{\,{\cdot}\,,{\cdot}\,\}$, where
$$ \begin{equation*} \operatorname{Ker}\mathbf{L}\times\operatorname{Ker}\mathbf{L}\ni(g,h) \mapsto\{g,h\}\in\operatorname{Ker}\mathbf{L}. \end{equation*} \notag $$
In more detail, the equation $\mathbf{L} g=0$ is written as $Lg-W_\mathrm{i}\cdot\partial_{u_\mathrm{i}}g=0$, where
$$ \begin{equation*} \begin{gathered} \, Lg =\partial_tg+v^\mu\cdot\partial_{x^\mu}g+\operatorname{div}\mathrm{v}\cdot g, \\ W_\mathrm{i}=\sum_{\mathrm{j}+\mathrm{k}=\mathrm{i},\, \mathrm{j}\ne0}\binom{\mathrm{i}}{\mathrm{k}} \partial_{x^\mathrm{j}}v^\mu\cdot u_{\mathrm{k}+(\mu)} +\sum_{\mathrm{j}+\mathrm{k}=\mathrm{i}} \binom{\mathrm{i}}{\mathrm{k}}\partial_{x^\mathrm{j}}\operatorname{div}\mathrm{v} \cdot u_\mathrm{k}, \end{gathered} \end{equation*} \notag $$
$\partial_{\mathrm{x}^\mathrm{j}}=(\partial_{x^1})^{j^1}\circ\dots\circ(\partial_{x^m})^{j^m}$, $\mathrm{j}=(j^1,\dots,j^m)\in\mathbb{I}$.

Proposition 1. The linear operator $\mathbf{L}=L-W_\mathrm{i}\cdot\partial_{u^\mathrm{i}} \colon \mathcal{A}\to\mathcal{A}$ is the order-nonincreasing, that is, $\operatorname{ord}(\mathbf{L} g)\leqslant\operatorname{ord} g$ for any $g\in\mathcal{A}$.

Theorem 2. The equation $\mathbf{L} g=0$ has the general solution $g(t,\mathrm{x},\mathbf{u})\in\mathcal{A}$ implicitly defined by the equality

$$ \begin{equation*} \mathbf{K}(\mathrm{s},\mathbf{w},\varkappa)=0, \end{equation*} \notag $$
where $\mathbf{K}$ is an arbitrary function of a finite order, while $\mathrm{s}(t,x)$, $\mathbf{w}(t,x,\mathbf{u})$, and $\varkappa(t,x,\mathbf{u},g)$, are the first integrals of the system
$$ \begin{equation*} \frac{dt}{1}=\frac{dx^\mu}{v^\mu}=-\frac{du_\mathrm{i}}{W_\mathrm{i}} =-\frac{dg}{\operatorname{div}\mathrm{v}\cdot g}, \qquad \mu\in\mathbf{m}, \quad \mathrm{i}\in\mathbb{I} \quad (\textit{without summation}!), \end{equation*} \notag $$
here $\mathrm{i}=(i^\mu)\in\mathbb{I}$, $\mathbf{u}=(u_\mathrm{i})$, $\mathbf{w}=(w_\mathrm{i})\in\mathbb{R}_\mathbb{I}$.

Remark 2. Note that the functions $\mathrm{s}(t,x)$ here are solutions of the Liouville equation (2).

Again, the situation simplifies when the vector field $\mathrm{v}$ is divergence free. Indeed, if $\operatorname{div}\mathrm{v}=0$, the equation $\mathbf{L} g=0$ takes the form

$$ \begin{equation*} \mathbf{L} g=\partial_tg+v^\mu\cdot\partial_{x^\mu}g -W'_\mathrm{i}\cdot\partial_{u_\mathrm{i}}g=0, \qquad W'_\mathrm{i}=\sum_{\mathrm{j}+\mathrm{k}=\mathrm{i},\, \mathrm{j}\ne0} \binom{\mathrm{i}}{\mathrm{k}} \partial_{x^\mathrm{j}}v^\mu\cdot u_{\mathrm{k}+(\mu)}, \end{equation*} \notag $$
and has the general solution $g=\rho(\mathrm{s},\mathbf{w})$, where $\rho$ is an arbitrary function of a finite order, while $\mathrm{s}(t,x)$, $\mathbf{w}(t,x,\mathbf{u})$ are the first integrals of the shorten system
$$ \begin{equation*} \frac{dt}{1}=\frac{dx^\mu}{v^\mu}=-\frac{du_\mathrm{i}}{W'_\mathrm{i}} =\frac{du_0}0, \qquad \mu\in\mathbf{m}, \quad \mathrm{i}\in\mathbb{I}\setminus\{0\} \quad \text{(without summation!)}. \end{equation*} \notag $$

§ 3. Conservation laws

The linear space of conservation laws for the Liouville equation $L\phi=0$ is defined as the factor-space

$$ \begin{equation} \mathrm{CL}(L)=\{\rho\in\mathcal{A} \mid D_t\rho\in\operatorname{Div}\mathcal{A}^\mathbf{m}\} \bigm/ \{\rho\in\operatorname{Ker}\delta_u\}, \end{equation} \tag{4} $$
where $\operatorname{Div}\mathrm{J}=D_\mu J^\mu$, $\mathrm{J}=(J^\mu)\in\mathcal{A}^\mathbf{m}$, the variational derivative
$$ \begin{equation*} \delta_u \colon \mathcal{A}\to\mathcal{A}, \qquad \rho\mapsto\delta_u\rho =(-D)_\mathrm{i}(\partial_{u_\mathrm{i}}\rho) \end{equation*} \notag $$
(see [5]–[8], for example).

Theorem 3. There is defined the isomorphism of the linear spaces

$$ \begin{equation} \delta_u \colon \mathrm{CL}(L)\simeq\{\chi\in\operatorname{Ker}\mathbf{D}_t \mid \chi_*=\chi^*\}, \qquad [\rho]\mapsto\chi=\delta_u\rho, \end{equation} \tag{5} $$
where $[\rho]=\rho+\operatorname{Ker}\delta_u$, $\chi\in\mathcal{A}$,

Note that the linear operator $\mathbf{D}_t \colon \mathcal{A}\to\mathcal{A}$ is the order-nonincreasing.

Theorem 4. The equation $\mathbf{D}_t\chi=0$ has the general solution $\chi=R(\mathrm{s},\mathbf{w})$, where $R$ is an arbitrary function of a finite order, while $\mathrm{s}(t,x)$, $\mathbf{w}(t,x,\mathbf{u})$ are the first integrals of the system

$$ \begin{equation*} \frac{dt}{1}=\frac{dx^\mu}{v^\mu}=-\frac{du_\mathrm{i}}{W'_\mathrm{i}} =\frac{du_0}0, \qquad \mu\in\mathbf{m}, \quad \mathrm{i}\in\mathbb{I}\setminus\{0\} \quad \textit{(without summation!)}, \end{equation*} \notag $$
here $\mathrm{i}=(i^\mu)\in\mathbb{I}$, $\mathbf{u}=(u_\mathrm{i})$, $\mathbf{w}=(w_\mathrm{i})\in\mathbb{R}_\mathbb{I}$.

Remark 3. Note, $\mathbf{D}_t=\mathbf{L}|_{\operatorname{div}\mathrm{v}=0}$.

§ 4. Examples

Example 1. Let $\mathrm{x}=(x^1,x^2)\in\mathrm{X}=\mathbb{R}^2$, $x^1=q$, $x^2=p$, $H=\frac{p^2}{2m}$, then $\mathrm{v}=(v^1,v^2)$, $v^1=\partial_{x^2}H=\frac{p}{m}$, $v^2=-\partial_{x^1}H=0$ (see Example 6.1 in [9]), so here

$$ \begin{equation*} L=\frac d{dt}=\partial_t+\frac pm\, \partial_q, \qquad \mathbf{L}=\mathbf{D}_t=L-W_{j,k}\cdot\partial_{u_{j,k}}, \quad W_{j,k}=\frac{k}{m} u_{j+1,k-1}, \end{equation*} \notag $$
where $\mathrm{i}=(j,k)\in\mathbb{I}=\mathbb{Z}_+\times\mathbb{Z}_+$.

In particular, the equation $\mathbf{D}_t\chi=0$ has the general solution $\chi=R(r,s,\mathbf{w})$, where $R(r,s,\mathbf{w})$ is an arbitrary function of a finite order, while $r(t,q,p)$, $s(t,q,p)$, and $\mathbf{w}(t,q,p,\mathbf{u})$ are the first integrals of the system

$$ \begin{equation*} \frac{dt}1=\frac{m\,dq}p=\frac{dp}0=-\frac{du_{j,k}}{W_{j,k}}, \qquad j,k\in\mathbb{Z}_+ \quad \text{(without summation!)}, \end{equation*} \notag $$
here $\mathrm{i}=(j,k)\in\mathbb{I}=\mathbb{Z}_+\times\mathbb{Z}_+$, $\mathbf{u}=(u_{j,k})$, $\mathbf{w}=(w_{j,k})$.

Proposition 2. In the above settings, the first integrals $r$, $s$, and $\mathbf{w}$ are:

where $\tau=\frac{t}{m}$.

Corollary 1. The Lie algebra $\operatorname{Sym}(L)\simeq\operatorname{Ker}\mathbf{D}_t$.

Corollary 2. The linear space $\mathrm{CL}(L)\simeq\{\chi\in\operatorname{Ker}\mathbf{D}_t \mid \chi_*=\chi^*\}$. In addition,

$$ \begin{equation*} r_*=r^*=0, \qquad s_*=s^*=0, \qquad (w_{j,k})_*=(-1)^{j+k}(w_{j,k})^*. \end{equation*} \notag $$

Remark 4. One may say that $\mathrm{CL}(L)\subset\operatorname{Sym}(L)$.

Example 2. Let again $\mathrm{x}=(x^1,x^2)\in\mathrm{X}=\mathbb{R}^2$, $x^1=q$, $x^2=p$, but the Hamiltonian $H=\frac{p^2}{2m}+\frac{\varkappa q^2}2$. In this case, $\partial_{x^2}H=\frac{p}{m}$, $\partial_{x^1}H=\varkappa q$, so the vector field $\mathrm{v}=\bigl(\frac{p}{m},-\varkappa q\bigr)$ (see Example 6.3 in [9]), so here

$$ \begin{equation*} L=\frac d{dt}=\partial_t+\frac{p}{m}\,\partial_q-\varkappa q\,\partial_p , \qquad \mathbf{L}=\mathbf{D}_t=L-W_{j,k}\,\partial_{u_{j,k}}, \end{equation*} \notag $$
where $ \mathrm{i}=(j,k)\in\mathbb{I}=\mathbb{Z}_+\times\mathbb{Z}_+$, $W_{j,k}=-j\varkappa u_{j-1,k+1}+\frac{k}{m} u_{j+1,k-1}$, $j,k\in\mathbb{Z}_+$.

The equation $\mathbf{D}_t\chi=0$ has the general solution $\chi=R(r,s,\mathbf{w})$, where $R$ is an arbitrary function of a finite order, while $r(t,q,p)$, $s(t,q,p)$, and $\mathbf{w}(t,q,p,\mathbf{u})$ are the first integrals of the system

$$ \begin{equation*} \frac{dt}1=\frac{mdq}p=-\frac{dp}{\varkappa q}=-\frac{du_{j,k}}{W_{j,k}}, \qquad j,k\in\mathbb{Z}_+ \quad \text{(without summation!)}, \end{equation*} \notag $$
here $\mathrm{i}=(j,k)\in\mathbb{I}=\mathbb{Z}_+\times\mathbb{Z}_+$, $\mathbf{u}=(u_{j,k})$, $\mathbf{w}=(w_{j,k})$.

In the above setting, the first integrals $r$, $s$ are as follows (see Example 6.3 in [9]):

The first integrals $w_{j,k}$ are defined by the equations

$$ \begin{equation*} -j\varkappa u_{j-1,k+1}+\dot u_{j,k}+\frac{k}{m} u_{j+1,k-1}=0, \qquad j,k\in\mathbb{Z}_+, \quad \dot u=\frac{du(t)}{dt}. \end{equation*} \notag $$
Simple but tedious calculations give:

(0) $j+k=0$:

(1) $j+k=1$: hence (2) $j+k=2$: hence (3) $j+k=3$: hence and so on, for $j+k=4,5,\dots$ .

Again, the statements from the previous example are true. Namely:


Bibliography

1. I. V. Volovich, Time irreversibility problem and functional formulation of classical mechanics, arXiv: 0907.2445v1
2. I. V. Volovich, “Bogoliubov equations and functional mechanics”, Theoret. and Math. Phys., 164:3 (2010), 1128–1135  crossref  adsnasa
3. I. V. Volovich, “Functional stochastic classical mechanics”, $p$-Adic Numbers Ultrametric Anal. Appl., 7:1 (2015), 56–70  mathnet  crossref  mathscinet  zmath
4. R. Courant and D. Hilbert, Methods of mathematical physics, v. II, Wiley Classics Library, Partial differential equations, Reprint of the 1962 original, John Wiley, New York, 1989  crossref  mathscinet  zmath
5. P. J. Olver, Applications of Lie groups to differential equations, Grad. Texts in Math., 107, Springer-Verlag, New York, 1986  crossref  mathscinet  zmath; 2nd ed., 1993  crossref  mathscinet  zmath
6. Symmetries and conservation laws for differential equations of mathematical physics, Transl. Math. Monogr., 182, eds. I. S. Krasil'shchik and A. M. Vinogradov, Amer. Math. Soc., Providence, RI, 1999  crossref  mathscinet  zmath
7. V. V. Zharinov, Lecture notes on geometrical aspects of partial differential equations, Ser. Soviet East European Math., 9, World Sci. Publ., River Edge, NJ, 1992  crossref  mathscinet  zmath
8. V. V. Zharinov, “Conservation laws of evolution systems”, Theoret. and Math. Phys., 68:2 (1986), 745–751  crossref  adsnasa
9. V. V. Zharinov, Dynamics of wave packets in the functional mechanics, arXiv: 2203.12028v1

Citation: V. V. Zharinov, “Symmetries and conservation laws of the Liouville equation”, Izv. Math., 87:5 (2023), 941–946
Citation in format AMSBIB
\Bibitem{Zha23}
\by V.~V.~Zharinov
\paper Symmetries and conservation laws of the Liouville equation
\jour Izv. Math.
\yr 2023
\vol 87
\issue 5
\pages 941--946
\mathnet{http://mi.mathnet.ru//eng/im9356}
\crossref{https://doi.org/10.4213/im9356e}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4668101}
\zmath{https://zbmath.org/?q=an:1527.35453}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2023IzMat..87..941Z}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=001101882800005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85177089475}
Linking options:
  • https://www.mathnet.ru/eng/im9356
  • https://doi.org/10.4213/im9356e
  • https://www.mathnet.ru/eng/im/v87/i5/p92
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024