|
This article is cited in 1 scientific paper (total in 1 paper)
On the Lefschetz theorem for the complement of a curve in $\mathbf P^2$
Vik. S. Kulikov
Abstract:
Let $\bar E$ be an irreducible plane curve over the field $\mathbf C$ of complex numbers, let $\widetilde\nu\colon\widetilde E\to E\subset\mathbf P^2$ be the normalization morphism, and let $\bar D$ be an arbitrary curve in $\mathbf P^2$ such that $\bar E\not\subset\bar D$. The main result of this paper says that if $\bar E$ and $\bar D$ intersect transversely, then $\widetilde\nu_*\colon\pi_1(\widetilde E\setminus\widetilde\nu^{-1}(\bar E\cap\bar D))\to\pi(\mathbf P^2\setminus\bar D)$ is an epimorphism.
Received: 16.01.1992
Citation:
Vik. S. Kulikov, “On the Lefschetz theorem for the complement of a curve in $\mathbf P^2$”, Izv. RAN. Ser. Mat., 56:4 (1992), 889–906; Russian Acad. Sci. Izv. Math., 41:1 (1993), 169–184
Linking options:
https://www.mathnet.ru/eng/im932https://doi.org/10.1070/IM1993v041n01ABEH002254 https://www.mathnet.ru/eng/im/v56/i4/p889
|
Statistics & downloads: |
Abstract page: | 243 | Russian version PDF: | 81 | English version PDF: | 15 | References: | 49 | First page: | 2 |
|