Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya, Forthcoming paper (Mi im9292)  

A further sufficient condition for the determinantal conjecture

Ya. Shitov
Abstract: Let $A$, $B$ be $n\times n$ normal matrices with eigenvalues $(a_1,\ldots,a_n)$, $(b_1,\ldots,b_n)$, respectively. We show that $\det(A+B)$ lies in the convex hull of
$$\bigcup\limits_{\psi\in\mathcal{S}_n}\left\{\prod\limits_{i=1}^n\left(a_i+b_{\psi_i}\right)\right\}$$
provided that all eigenvalues of $A$, $B$ are real except possibly $\varepsilon=3$ eigenvalues of $B$. This improves on earlier results showing the same conclusion with $\varepsilon=1$ (Kovačec, 1999) and $\varepsilon=0$ (Fiedler, 1970).
Keywords: normal matrices, eigenvalues, determinantal conjecture.
Received: 21.11.2021
Revised: 26.12.2021
MSC: 15A18, 15B57
Language: Russian
Linking options:
  • https://www.mathnet.ru/eng/im9292
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:205
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024