Processing math: 100%
Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya, Forthcoming paper (Mi im9292)  

Еще одно достаточное условие справедливости гипотезы Маркуса и де Оливейры

Ya. Shitov
Abstract: Let A, B be n×n normal matrices with eigenvalues (a1,,an), (b1,,bn), respectively. We show that det(A+B) lies in the convex hull of
ψSn{ni=1(ai+bψi)}
provided that all eigenvalues of A, B are real except possibly ε=3 eigenvalues of B. This improves on earlier results showing the same conclusion with ε=1 (Kovačec, 1999) and ε=0 (Fiedler, 1970).
Keywords: нормальные матрицы, собственные значения, гипотеза Маркуса и де Оливейры.
Received: 21.11.2021
Revised: 26.12.2021
MSC: 15A18, 15B57
Language: Russian
Linking options:
  • https://www.mathnet.ru/eng/im9292
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:237
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025